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Abstract
This article deals with an important task for the processing of morphologically rich languages. Unsupervised
learning of morphology mainly consists of learning a grammar that enables word segmentation into morphemes
without any prior knowledge of the analysed language. It is usually assumed that the origins of such a task date
back to the times of Zellig Harris, an assumption which ignores the important contribution of his contemporary, the
Soviet linguist Nikolaj Dmitrievič Andreev, who developed a statistico-combinatorial model to learn morphology
in the 1960s. We propose a critical description of Andreev’s model and attempt to bring to light its pioneering
aspects as well as its weaknesses. Finally, we show results over several European languages. Our implementation
of the model can be downloaded from https://github.com/franckbrl/stat_comb_model.

Key words: Morphology, Soviet Linguistics, Information Theory, word segmentation, unsupervised learning,
Nikolaj Andreev, statistico-combinatorial model.

1. Introduction
The task of unsupervised learning of morphology generally consists of learning a model that
segments words into smaller units: morphemes1. It assumes as input a text segmented into
words and produces a model that is similar to a grammar learned without prior linguistic knowl-
edge, according to which the words of the same text are split into grammatically relevant mor-
phological units. It is usually assumed that the origins of such an important task date back to the
times of Zellig Harris, an assumption which ignores the important contribution of his contem-
porary, the Soviet linguist Nikolaj Dmitrievič Andreev (1920-1997), who spent his career at the
Institute of Linguistics of the Academy of Sciences in Leningrad. In the 1960s, he has devel-
oped the statistico-combinatorial model to learn morphology in an unsupervised way, mainly
described in two books: (Andreev, 1965) and (Andreev, 1967).

This model, making Andreev a pioneer in the domain, has nevertheless remained unknown in-
ternationally, and the first citations of his works in the literature are rather recent. Firstly, his
work on the learning of morphology has never been translated from Russian into any other
language. Secondly, the model is described in his work in a rather fragmentary manner. In-
deed, when reading Andreev’s descriptions of the algorithm, the impression is that it was never
fully implemented and those descriptions are different pieces that we sometimes had a hard
time trying to put together in our implementation. These difficulties, noticed earlier in (Ham-
marström and Borin, 2011)2 and (Goldsmith, 2001), seem to be a serious obstacle to the suc-
cess Andreev’s work deserves. Besides, there exists, to our knowledge, only one attempt to
implement his model, by Cromm (1997). Unfortunately, this short paper does not give a bet-
ter understanding of the statistico-combinatorial model than the original books. We argue in

1 The Morpho Challenge describes this task as “discover[ing] which morphemes (smallest individu-
ally meaningful units of language) words consist of” (http://research.ics.aalto.fi/events/
morphochallenge/).
2 “The papers describing these experiments are short, and it is not always clear exactly what has been done.”
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this paper that such difficulties are not a good enough reason for taking away from Andreev
the important place he should be holding in the history of the task. For the sake of clar-
ity, this article also presents our implementation of the model, that can be downloaded from
https://github.com/franckbrl/stat_comb_model.

We first describe Andreev’s statistico-combinatorial model and comment on our attempt to im-
plement it. We then report experimental results obtained with this implementation. Finally,
we put Andreev’s findings into perspective by bringing their pioneering aspects to light and by
investigating what is still used nowadays in state-of-the-art systems.

2. The statistico-combinatorial model
The first step of Andreev’s algorithm consists of identifying the bootstrap affix (see 2.2.), which
is used to identify stems that can associated to it. The comparison of the different affixes seen
with these stems enables the identification of the first class, grouping together stems sharing
a set of affixes (see Table 1). By repeating these steps, we obtain as output: 1) a model that
segments the words from the corpus into stems and affixes; 2) a categorization of each analysed
token (that shall belong to a class).

What we look for Input Function Output
type d typing gla d note d noting for meeting note fe d

1: Informants -1: d , g, e, r Correlative function (§ 2.1.) ( d , -1), (n, -2), (i, -3),
(by position) -2: e, n, a, o, t (e, -1), (e, -2)

-3: p, i, l, t...
2: Bootstrap affix ed, ad Gradient rate (§ 2.2.) Affix extended to ed

(from 1st informant)
typ ed typing glad not ed noting for meeting note f ed

3: Class stem set Tokens Get type stems typ , not , f

typed typ ing glad noted not ing f or meeting not e fed

4: Tokens containing Tokens Get word forms typing, noting

class stems for, note

5: 2nd affix ing or e Correlative function (§ 2.3.) 2nd affix: ing

typ ed typ ing glad not ed not ing for meet ing note f ed

6: Bootstrap affix Tokens Get type stems typ not f

stems (M1)
7: 2nd affix stems (M2) Tokens Get type stems typ not meet

8: Add affixes to class M1, M2 Reduction rate (§ 2.3.) Added ed, ing

9: New class stem set Class stem set \M1 \M2 typ, not

10: Go to 4: with ing as bootstrap affix and the new class stem set (e is the second affix selected in 5:).
11: Go to 1: and select the next informant from the list (n at position -2).

Table 1: Accepting the first two affixes of the class (on a toy corpus of 9 tokens) using as first informant
d at position -1. See text for details.

The algorithm starts by collecting a few statistics over the corpus. We obtain the unigram
character probability p(char) and the average word length, which is used to formulate two as-
sumptions: 1) words shorter than 2

3 of the average length are ignored and remain unsegmented;
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2) the hypothetical affix length does not exceed the average word length. Within this affix
length limit, the probability of characters conditioned on their absolute position in the word
p(char|pos)3 can be computed. Once this is done, it is possible to make more specific assump-
tions about the words in the corpus. The examples illustrating this description are obtained with
our own implementation over the first 40,000 sentences of the News Crawl 2014 corpus.4

2.1. Informants

In (Andreev, 1967), the term informant refers to characters at a certain position in the words
that are either potential affixes by themselves (such as s at the end of a word), or need to be
extended with additional characters in order to form an affix (e.g. g is extended to ing). To
obtain such informants, characters in the hypothetical affix zone of the words need to be filtered
by their conditional probability. At each position in the word, Andreev keeps the characters for
which the conditional probability is higher than half the maximum conditional probability for
that position. For each character remaining at a given position, the next step computes what
the author calls the correlative function (CF),5 which measures the degree of dependency of the
character with respect to its position in the word (Equation (1)).

rank char p(char) pos p(char|pos) CF(char)
1 w 0.02 1 0.06 4.17
4 d 0.04 -1 0.11 2.76
8 i 0.07 -3 0.18 2.38
9 s 0.07 -1 0.15 2.21

Table 2: Characters ranked by their correlative function.

CF(char) =
p(char|pos)

p(char)
(1)

The character that has the highest correlative function becomes the first informant, thanks to
which we obtain the bootstrap affix. In our experiments with English (Table 2), the first three
informants do not seem likely to be part of any affix and we have to wait for the fourth (d at
position �1), which may very well extend to the suffix forming the verbal past tense ed (as in
segment-ed). The progressive ending ing comes into right with the eighth informant i at
position -3, followed by the third person (or plural) suffix: s at word end (position -1).

2.2. The bootstrap affix

The goal of the next step is to decide whether the informant already forms an affix (such as the
9th informant s in Table 2), or if the character needs to be extended, considering that at this
point in time we have no reason to consider that ed (in segment-ed) is a better suffix than
nted (in segme-nted).

In (Andreev, 1967), the author constrains the affix extension by setting a maximum affix length
of

⌃
L2/S

⌥
(where L is the average word length and S the average sentence length), although he

does not explain why the affix length should depend on those values. According to this formula,
the maximum affix length in our English experiment is 1, which would be problematic.6 No

3 The position index (pos) starts at 1 from the beginning of the word (prefix) and at -1 from its end (suffix).
4
http://www.statmt.org/wmt15/translation-task.html

5 The similarities between the correlative function and the pointwise mutual information are discussed in 4.2.
6 First, such a constraint would prevent extending -d into -ed. Second, the author does not specify what happens
when informant i is located at position -3 (see Table 2), which is two characters above the maximum affix length
(the suffix found from this informant cannot be shorter than three characters).
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such constraint appears in (Andreeva, 1965) and we set this limit to 4 in our implementation. In
order to find the right extension of the affix, Andreev (1967) resorts to what he calls the gradient
rate. The idea is to compare the frequencies (pi=1 and pi=2) of the two most frequent characters
near the affix in construction. Therefore the gradient rate of a given affix GR(aff) is:

GR(aff) =
P1

P2
; where

⇢
Pi = p(char = c,pos = x+1|aff = a,pos = x) (Extend rightwards)
Pi = p(char = c,pos = x�1|aff = a,pos = x) (Extend leftwards)

Note that Baklušin (1965) describes this measure as negentropy. Indeed, as we shall mention
in 4.1., the gradient rate has a lot in common with entropy, since it estimates the degree of
predictability of the closest character to the informant. Andreev compares this measure to a
threshold, which he sets to 1.5 (again without any explanation):

• GR(aff)> 1.5: the most frequent neighbour of the informant is added to the starting affix
in construction and we can iterate the procedure.

• GR(aff)< 1.5: we stop the affix extension.

If the informant is at position 1 or -1, the extension is directed towards the inside of the word.
Otherwise, the affix is extended towards the end or the beginning. If, at this last step, the gradient
rate rejects all extensions, the informant is rejected. GR values obtained in our experiments for
the informant i at position -3 are in Table 3 and help identify the bootstrap affix ing.

c1,c2 pos P1 P2 GR Result
n, t -2 0.33 0.12 2.69 > 1.5 n accepted: in
g, e -1 0.81 0.07 12.48 > 1.5 g accepted: ing
t, d -4 0.14 0.11 1.25 < 1.5 t refused

Table 3: Extension of the informant i at position -3 (c1 and c2
are its most frequent neighbours).

CF(aff) =
p(aff|pos)

’char2aff p(char)
(2)

2.3. The search for paradigms

Once the bootstrap affix has been found, we identify all the stems that were seen with it in
the corpus. The resulting set of stems is smoothed by removing the most infrequent elements.
The set affixes associated with these stems in the corpus are similarly computed, and smoothed.
Note that this initial set of stems (see the class stem set of step 3 in Table 1) will be used until
the end of the search for the paradigm and reduced each time a new affix is accepted (step 9).

Candidate affixes are sorted by their correlative function, which is computed as the relation of
the conditional probability of the affix to its marginal probability. The conditional probability
of the affix is obtained as the count of words that contain it at the corresponding position (pos
being either the beginning or the end of the word), normalized by the vocabulary size. The
marginal probability is seen by the author as the random co-occurrence of the characters it is
composed of, computed as the product of the unigram probabilities of each character in the affix
(Equation (2)). In our experiments, the bootstrap affix ing first helps the identification of the
candidate affix ed, which has a conditional probability of 0.06 and a marginal probability of
0.004, giving the highest CF (11.82). Those two affixes can enter the paradigm, provided that
they come under inflection (as opposed to derivation). The author’s strategy to implement such
a distinction relies on the observation that the number of stem types observed with one affix
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UNSUPERVISED LEARNING OF MORPHOLOGY IN THE USSR 5

is not too different from the number of stem types seen with the second one, if both express
inflection.7 Besides, Andreev specifies that this difference should take into consideration the
corpus size in order to address data sparsity issues. He introduces a coefficient K that should
allow the relation of both quantities to be better adapted to a specific corpus. Without further
explanation, he recommends Equation (3), obtained after several experiments that he does not
describe (L is the average word length and V the vocabulary).

log10 K =
log10 L

1+0.02log10V
(3) R =

|M1|� |M2|
K ⇥ |M1|

(4)

This reduction coefficient K is used to compute the reduction rate R of both affixes, based on the
length of the sets of stems seen in the corpus with the bootstrap affix (M1) and with the second
candidate affix (M2, see Equation (4)). R is compared to the reduction threshold T , which is set
to 1/L (without explanation), which leads to two situations:

• R > T : The second affix does not become part of the paradigm. Step 5 (see Table 1) is
repeated with the next second candidate affix identified by the bootstrap affix;8

• R < T : Both affixes are added to the paradigm. The second candidate affix becomes the
bootstrap affix, according to which we search for the new second affix. In this case, this
next step is performed only with the stems that are common to both accepted affixes and
the class stems (step 9 in Table 1).

These steps are repeated until one of three situations occurs: 1) there are only two stems left;
2) there are no more second candidate affixes; 3) if several affixes in a row have a gradient rate
above the threshold. We added an extra condition for accepting a new affix: the class stem set
must contain at least 1

10 elements from the previous remainder set, right before the new affix is
accepted. This constraint should ensure a certain consistency of the type.

Candidates M1 M2 Reduction Result Class stems
ing, ed 636 828 0.06 < 0.23 ing, ed accepted 342
ed, es 828 589 0.08 < 0.23 es accepted 85
es, e 589 1552 0.16 < 0.23 e accepted 73

Table 4: Reduction rate for the affixes obtained using ing as a bootstrap affix. The last column indicates
the number of class stems that are common to both affixes.

After this procedure, we obtain a class composed of a set of affixes corresponding to a set of
stems. Note that the latter is often rather small, since each time an affix is accepted, we only
keep the stems that appear with this affix and the bootstrap affix.

Andreev does not reveal how such classes are used to tag and segment the corpus. Indeed,
sticking to the stems that belong to one class might result in a very low recall. On the other
hand, segmenting all the words containing an affix from a class might hurt precision. The class
in Table 4 obviously corresponding to verbs, if we segment all words ending in e, not only will
we tag nouns as verbs, but we will also segment words that should not be split (e.g. tre-e).

Once the first class is obtained, we can process the next informant character. We finally repeat

7 In our English corpus, we observe 435 different stems with the prefix pro, against 1647 with co. On the other
hand, ing and ed correspond respectively to 2936 and 3620 different stems, showing closer figures for inflection.
8 If this happens with the first pair of candidate affixes for the class, no class is created, affixes are rejected and
the algorithm resumes with the next informant character (step 1 in Table 1).
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those steps until all the informants have been processed. Note that the algorithm we describe
does not take into account more than one affix in a row and thus ignores situations like the
Russian verb sad-iš-sja. Although Andreev (1967) claims to address complex cases such
as agglutination (p.42), he describes the procedure in rather fuzzy terms, and we were not able
to implement this function. The author also mentions a way to split certain types into sub-types
(p.49), and finally claims to process Russian palatalization, where a consonant varies with the
suffix, as in gljadet’ - gljažu. Unfortunately, his descriptions of those procedures are
very short and unclear (p.49).

Cromm (1997) introduces Andreev’s model as an affix identifier. The statistico-combinatorial
model is in fact a lot more ambitious than this and Andreev claims to perform a word clustering
task by assigning a type to each word in the corpus, while performing in parallel a segmentation
task. Andreev (1967) finally describes a way to add to existing classes words that were so far
undefined, by exploring the context of the words already belonging to a class. However, from
this part of the algorithm on, the author stops giving empirical results and we have no reason to
believe that he actually ever implemented it.

3. Experimental results
We provide experimental results of Andreev’s model for English, French and Russian. In those
experiments, we consider only suffixes, since we know that inflection only concerns word end-
ings. Without this constraint, a few prefixes would be accepted and lead for example to a class
composed of pro and the null prefix applied to stems such as tested, grams, vision,
etc. We also set the minimum number of stems to 10, as opposed to 2 suggested by Andreev,
because we observed that the last accepted affixes were often inconsistent with the class.

Class Affixes Stems Examples
1 ing, ed, 15 vot, lov, provid

es, e, er
2 ies, y 287 all, abilit, dut
3 s, null 110 attempt, fight

Table 5: Classes for English.

Class Affixes Stems Examples
1 es, e, s, null 1074 adéquat, retenu
2 s, null 445 genre, livre, coffre
3 ions, ion, ive, if, eur 16 récept, oppress, agress
4 aire, és, ées, er, ée 10 honor, fragment, not
5 rait, ons, ant, ent, 12 remett, perd, mett

re, ait, ez

Table 6: Classes for French.

The English classes reported in Table 5 account for the two plural forms (2, 3) and the regular
verb conjugation for stems ending in e (1). The model adds the agentive -er to this class,
even though is not a verbal inflection. In the process of the third type construction, affixes t
and ts were accepted, but we applied one of Andreev’s rules stating that if all the suffixes of
the class start with the same letter (t here), this common letter should be transfered to the stem
(tex-ts, text-s). Therefore the stems in this class all end with the letter t.

For the French experiments (Table 6), we used 1M sentences from the Europarl corpus (Koehn,
2005). The model found the full paradigm of French regular adjectives (1) and nouns (2),
although the latter was obtained through the validation of affixes re and res for which the
first two characters were transfered to the stem. (3) contains derivational endings, although we
notice that inflection distinguishes both ions from ion (plural and singular) and ive from
if (feminine and masculine with a consonant shift between v and f). (4) gathers a few verbal
endings, but did not go far during the search, mainly because the first bootstrap affix -aire

JADT 2016 : 13èmes Journées internationales d’Analyse statistique des Données Textuelles

Laurent Vanni
Texte



UNSUPERVISED LEARNING OF MORPHOLOGY IN THE USSR 7

actually comes under noun derivation. (5) is a much better verbal paradigm (verbs with an
infinitive in re), despite its sparsity.

Class Affixes Stems Examples
1 oj, yx, ogo, ymi, yj, uju, omu, ym, ye, aja, om, oe, o, y, a 40 ser’ezn, zdorov, osob
2 t’, lsja, tsja, li, la, lo, l 54 ustroi, otpravi, vloži
3 enija, it’, ili, at’, ajut, aet, ali, ala, al, ila, il, eny, ena, eno, en 10 soverš, razreš, poluč
4 l’nyx, ej, jam, ’, em, ja 10 nabljudatel, stroitel, zritel
5 enie, it’, ili, at’, ajut, aet, ali, ala, al, ila, il, eny, ena, eno, en 10 primen, rasšip, ustran
6 osti, ymi, yx, ogo 10 ser’ezn, slab, častn
12 ovat’, ujut, uet, ami, ax, am 10 interes, atak, miting

Table 7: A few classes for Russian.

The algorithm created 14 classes for Russian (see Table 7) over 1M sentences from the News
Crawl 2015 corpus. The first type contains the whole paradigm for Russian adjective (long and
short forms), except the masculine short form (null affix) which is harder to retrieve due to the
insertion of a mobile vowel (e.g. opasnyj - opasen). Note that this exact affix set was found
twice (i.e. both times starting from different informants), but unfortunately the second time did
not bring any new stems to the type. We further obtain three verbal types (2, 3, 5), the latter
being the most complete, containing also passive forms, although the search started from a noun
derivative affix (enie). Finally, (12) starts with three verbal endings, then accepts three noun
affixes: ami, ax, am are the only noun endings we got in these experimental conditions.

Our implementation of Andreev’s model retrieved many affixes and most of them are correctly
segmented. The reduction rate employed by Andreev to distinguish inflection and derivation
works well, considering the simplicity of the assumption behind it (among the 9 affixes retrieved
for English, only one is derivational). The main default we observe in these experiments is
the sparsity of the classes: one gold paradigm can be divided into several sparse classes (e.g.
Russian classes 2, 3, 5). Nevertheless, those classes keep a certain degree of inner consistency.

4. Putting the task into perspective
Most of the literature on the subject9, considers that the history of unsupervised learning of
morphology starts with Zellig Harris, who in (Harris, 1955) 10 laid the foundations of principles
that were used afterwards. In this closing section, we try to identify the common aspects of
these two models, focusing on an issue adressed by both both Harris and Andreev: morpheme
identification.

4.1. Using entropy to spot morpheme boundaries

Harris sees the question of morphological analysis as the identification of morpheme boundaries
based on successor variety. Given a corpus, a word a is considered from the first character up
to the character at position i (1  i  word length). The successor variety of ai corresponds to
the number of different characters seen at position i+1 in the words starting from the sequence
ai.11 The assumption is that a higher variety marks a morpheme boundary. In order to segment
a word, Harris proposes different strategies:

9 See (Goldsmith, 2001, 2010; Hammarström and Borin, 2011).
10 Therefore, eight years before the first article on the statistico-combinatorial model in (Andreeva, 1963).
11 The same method is applied in the other direction, using the predecessor variety.
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• he manually sets a threshold K and segments whenever the successor (or the predecessor,
or both) variety exceed it (Harris, 1955).

• he segments whenever the successor at position i+1 has a higher or equal variety to the one
at position i. This strategy consists in finding relative peaks in the varieties and dispenses
with the delicate choice of absolute thresholds (Harris, 1967).

The main disadvantage of using successor variety is that such a measure does not say anything
about the distribution throughout the corpus of the characters that form it. If a stem has a variety
of 10, we may well have a high number of occurrences of one specific successor and only a few
of the nine others. Even worse: a foreign word can occur once in the corpus and impact the
variety as much as any other highly frequent word.

Unlike Harris, Andreev has a statistical approach to the morpheme boundary identification prob-
lem. As we saw in Section 2.2., the gradient rate is very similar to entropy. Some works (Hafer
and Weiss, 1974; Juola et al., 1994) that adopted Harris’s principles proposed to replace the
simple diversity count by the entropy of the probability distribution over the neighbouring char-
acters. This measure is borrowed from Information Theory and is used to assess the degree of
predictability of an event. Here is how Hafer and Weiss (1974) use entropy: c(ai) is the number
of words in the corpus containing the stem identified up to position i in a word a ; c(ai j) is
the size of the subset of c(ai) in which the character at position i+ 1 is the jth letter of the
alphabet. Thus the probability of the successor of c(ai) is estimated by c(ai j)

c(ai)
. The entropy is

then computed in the following way (n is the number of letters in the alphabet):

H(ai) =�
n

Â
j=1

c(ai j)

c(ai)
log2

c(ai j)

c(ai)
(5)

According to this equation, a high entropy says that all the neighbouring characters have a
similar probability, which makes it harder to predict the right one. This situation indicates the
presence of a morpheme boundary. In the same way, Andreev’s gradient rate is a measure of
the predictability of the most frequent neighbouring characters: the lower12 it is, the harder it
is to predict the neighbouring character. Therefore, Andreev is, to our knowledge, the first to
have used a way to measure the dispersion of successor/predecessor distribution by means of an
equation that shares some properties with entropy. The difference is that Andreev’s gradient rate
involves only two characters and starts from the informant that is extended to other characters
until the border with the stem is reached. He is nevertheless not cited by Hafer and Weiss (1974),
who introduce a very similar idea more than ten years later. Note that the same procedure is used
today in Goldsmith’s Linguistica. Goldsmith (2006) uses entropy to check whether a character
on the stem side should be on the affix side, as i in attenti-on.

4.2. Pointwise mutual information

Andreev’s correlative function is another measure that is similar to the Information Theory con-
cept of pointwise mutual information, although the author does not mention this similarity. In
fact, he gives two distinct definitions of this measure. The first (Section 2.1.) is a means of iden-
tifying characters that are the most likely to be part of an affix (the informants) by comparing

12 A morpheme boundary is indicated either by a higher entropy or, on the contrary, by a lower gradient rate. We
suspect that this is the reason why Baklušin (1965) uses the term negentropy (or negative entropy) for this last
measure, although neither he, nor Andreev, refer to Information Theory.
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UNSUPERVISED LEARNING OF MORPHOLOGY IN THE USSR 9

the probability of a character conditioned on its position in the word to its marginal probability.
This bears a ressemblance to the way Church and Hanks (1990) compare the probability of
jointly observing two words x and y with the probability of seeing them independently. Equa-
tion (6) is the same as the correlative function, except that Andreev does not use a logarithm
(see Equation 1).

I(x,y)⌘ log2
P(x,y)

P(x)P(y)
= log2

P(x|y)
P(x)

(6)

The second definition of the correlative function in Equation (2) is a means of selecting the
most likely affixes. A very similar procedure is applied in Linguistica, although Goldsmith
(2006) views the problem of segmentation from a different level: he includes the search of the
paradigm in a global optimization problem. Just as in Andreev’s algorithm, a first step consists
of heuristics aimed at providing preliminary hypotheses about the way the corpus should be
segmented. These hypotheses are then accepted, provided that they minimise the Description
Length, which is a measure of how concise the representation of the data is given the model,
turning the segmentation task into a data compression problem.13

The heuristic search for the right segmentation described by Goldsmith (2001) goes from the
search for peaks in the words (see 4.1.), up to a distribution over all possible segmentations.14

He finally proposes to use weighted mutual information in order to reach the optimal segmen-
tation. This heuristic approach is described for suffix identification. In Equation (7), borrowed
from (Goldsmith, 2001), k-grams of characters are considered, nk being the word boundary.

WMI =
[n1,n2, ...,nk]

Total k-gram count
log

[n1,n2, ...,nk]

[n1][n2]...[nk]
(7) CF =

p(n1,n2, ...,nk)

p(n1)p(n2)...p(nk)
(8)

For the sake of comparison, we slightly reformulate Andreev’s correlative function in Equa-
tion (8). Both equations measure how the frequency of an affix differs from a random distri-
bution of the characters composing it, where each character is seen as independent from its
position within the word and from the other characters. Finally, both use this idea to extract
from the corpus candidate affixes that are the most likely to enter a paradigm. Although these
equations slightly differ from the classical definition of mutual information in (Fano, 1961),
they still introduce a relation between two perspectives on a set of events; they are, on the one
hand, seen as mutually dependent and, on the other hand, as independent.

5. Conclusion
We have described Andreev’s statistico-combinatorial model for the unsupervised segmentation
of words into morphemes and presented results over three European languages. The main weak
points of this approach are the multitude of manually set parameters at various steps (threshold
for informant identification, gradient rate threshold, maximum affix length, reduction thresh-
old, reduction coefficient), which are very dependent on the language being analysed and on
the corpus size. Despite these points, some of the solutions Andreev proposed, such as en-
tropy measure for morpheme boundary identification and mutual information to select the most
relevant affixes, are now used in state-of-the-art systems.

13 See also (Creutz and Lagus, 2002).
14 Learned using the Expectation-Maximisation (EM) procedure.
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His work suffered from his isolation from the world scientific community; while he never cites
Harris or Fano and barely mentions Shannon’s work on Information Theory (only once in a
footnote), he himself has almost never been cited by posterity. His findings remain nevertheless
fundamental in the history of the task.
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