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Abstract
First-order and second-order context vectors (C1 and C2) are two rival context representations used in word-sense
disambiguation and other endeavours related to distributional semantics. C1 vectors record directly observable fea-
tures of a context, whilst C2 vectors aggregate vectors themselves associated to the directly observable features of
the context. Whilst C2 vectors may appeal on a number of grounds, such as being less sparse and leveraging addi-
tional information from a larger corpus, not much work has been devoted to contrastingC2 withC1 vectors. While
the concerns of the paper are primarily empirical we also advocate a particular formulation ofC2 vectors, whereby
C2 vectors (of dimensionality f2) are derived from C1 vectors (of dimensionality f1) by post-multiplication by
some f1 × f2 matrix. This makes plainer the relation of the C2 construction to standard methods for dimension-
ality reduction. We then consider two geometric properties of C1- and C2-based sense vectors for sense-tagged
data. We show that, perhaps surprisingly, the C2-based representation of a sense is not to any great extent parallel
(similar) to the C1-based representation of that sense. We also show that the angular spread amongst the C1-based
sense vectors is considerably greater than the spread amongst the C1 versions. Following on from this, we then
compare both sense vectors in supervised word sense disambiguation and unsupervised word sense discrimination
settings, finding the C1-based vectors superior to the C2-based vectors in the supervised setting, but quite similar
in performance in the unsupervised setting.

Keywords: first-order context vectors, second-order context vectors, word-sense disambiguation, word-sense
discrimination, distributional semantics

1. Introduction
In computational lexical semantics, the so-called Vector SpaceModel (Salton, 1971; Turney and
Pantel, 2010) assumes that word meanings, and relations amongst them, can be modelled with
vectors, and geometrical notions based on them. The dimensions of these vectors are typically
This research is supported by Science Foundation Ireland (Grant 07/CE/I1142) as part of the Centre for Next

Generation Localisation (www.cngl.ie) at Trinity College Dublin. All calculations were performed on the Lonsdale
cluster maintained by the Trinity Centre for High Performance Computing. This cluster was funded through grants
from Science Foundation Ireland.
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Figure 1: To the left C1 vectors for different occurrences of w – #ui is count of unigram ui in a
window around the occurrence of w. Summing all givesW(w). To the right, the C2 vectors,

summing theW(ui) of the unigrams ui in the window.

identified with directly observable aspects of word occurrences, and in the simplest and most
widely adopted approach the dimensions are identified with unigrams that co-occur within a
certain window of a target word. For a token of word w, or equivalently a position p in a docu-
ment, one can define what is sometimes termed the first-order context vector of the instance
p, C1(p), such that C1(p)[u] – the value of the vector C1(p) for the unigram u – simply counts
how many occurrences of u there are within a specified distance of the particular occurrence of
w at p. From these token representations, for a word type, one can define what is often termed
the word vector, W(w), by some kind of aggregation over the token representations, and in
the simplest case, this is a sum. The result is that for a unigram u,W(w)[u] counts how many
occurrences of u there are within a specified distance of any occurrence of w in the corpus —
see left-hand side of Figure 1. Similarity of such word vectors1, as quantified for example by
cosine, has been used with some success as a means of assessing similarity of word meaning
(Lin, 1998; Rapp, 2003). The same approach can be adopted to seek to model the distinct
senses of an ambiguous word. Thus suppose w has K senses s1 . . . sK . If Pi is the set of w’s
occurrences manifesting sense si, then by aggregating the vectors C1(p) over just these occur-
rences, you obtain what can be termed the first-order sense vector, S1(Pi); the word-vector
is just the special case in which all occurrences of the word are counted. Such vectors have
been used for word-sense disambiguation (Oh and Choi, 2002; Sugiyama and Okumura, 2009;
Martinez and Baldwin, 2011).

In unsupervised word-sense induction or discrimination tasks the aim is to induce a sense-
reflecting partition over the tokens of an ambiguous word. It was working in this unsupervised
setting that Schütze (1998) introduced so-called second-order variants of context vectors and
sense vectors. A second-order context vector, C2(p), represents an instance p not directly in
terms of its neighbouring unigrams, but instead takes the word-vectors of those neighbouring
unigrams and sums them — see Figure 1, right. Because the word-vector of a neighbouring
unigram u contains counts for all the unigrams v with which u co-occurs, a value C2(p)[v] in
the second-order vector is said to refer to second-order co-occurrence information.

Just as a S1 vector can be defined from theC1 vectors for a particular set of occurrences, Schütze
(1998) defines a second-order sense vector, S2 by aggregating the C2 vectors for a particular
set of occurrences. A number of other authors have since worked with essentially these second-
order representations (Purandare and Pedersen, 2004; deMarneffe andDupont, 2004; Sagi et al.,

1or transforms of them, converting counts to measures of association
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2008; Wang and Hirst, 2010).

Thus there are two contending vector representations of a word’s sense, S1 and S2, differ-
ing simply according to whether they aggregate C1 or C2 vectors. There are diverse intu-
itions/motivations for using S2 and C2 vectors, rather than their first-order counterparts. One
intuition is that C1 vectors will tend to be sparse, having zeros on all but a small number of
dimensions and that C2 vectors will tend to be less so. A related intuition is that a C2 vector
brings additional information fromwords co-occurring elsewhere with the context’s ownwords,
potentially in a much larger corpus than the corpus on which word-sense discrimination is be-
ing done. These are intuitions only and there has not been a great deal of work systematically
comparing the representations. Purandare and Pedersen (2004) compare (a certain variant of)
C1 vectors with (a certain variant of) C2 vectors, leading to a conclusion that C1 out-performed
C2 when there are many examples (≈ 4, 000), but C2 out-performed C1 when there were few
examples (a few hundred). The aim of this paper is to carry out a more systematic comparison
of these representations than, we believe, has hitherto been done.

Section 2 formally defines the necessary notions. In doing this, we provide an alternative but
equivalent to the usual derivation of second-order context vectors, whereby a C2 vector (of di-
mensionality f2) is derived from a C1 vector (of dimensionality f1) by post-multiplication by
a f1 × f2 matrix. This makes plainer the relation of the C2 construction to SVD methods for
dimensionality reduction. Before evaluating first-order and second-order representations on
particular tasks, section 3.2 considers the geometry of sets of S1 vectors and S2 vectors. One
question looked at is the extent to which the S1 and S2 vectors for a given sense are approx-
imately parallel to each other. Another question looked at is whether the S1 vectors for the
different senses of a given word show a comparable angular spread amongst themselves to the
corresponding S2 vectors. Section 3.3 then evaluates first-order and second-order representa-
tions in supervised word-sense disambiguation experiments, whilst section 3.4 compares them
in unsupervised word-sense discrimination experiments. Section 4 then describes previous re-
lated work, and draws conclusions.

2. Definitions
Let doc be a corpus, and let winl(p) be a function returning a set of positions p′ around p – the
’window’ around p. l is the windowwidth2 and typically p′ ∈ winl(p) iff p−l/2 ≤ p′ ≤ p+l/2.
Then in general a feature can be identified with a function that maps windows to R. For a
particular position p in doc (or equivalently a particular token of a word), the first-order context
vector, C1(p), is a vector giving the values of the features in the window around p. In most
cases, features are equated with unigrams, one for each member of Σf , some chosen subset of
the unigrams of the corpus doc3, and the value of a unigram feature u on the window winl(p)
is simply the count of u in the window:

Definition 1 (First-order context vector (unigrams)). For window width l, and a choice of di-
mensionality f corresponding to a restriction to some unigram vocabulary Σf , the first-order
context vector for position p, C1(p) is the vector of dimensionality f such that for any u ∈ Σf ,
C1(p)[u] = frequency of u in winl(p).

2In this work, we set l = 20 for all experiments.
3This subset of unigrams Σf is a selection of f words from the corpus that fulfil some criteria. Following

Schütze (1998), experiments in this work select the top f most frequent words in the corpus, excluding function
(stop) words, but many other selection criteria are possible.
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A word vector is a vector to represent a particular word type w in a corpus, and is based on the
set of C1’s for its tokens. The simplest possibility is just to sum these.

Definition 2 (Word vector). Assuming C1(p) is defined for all positions p,

W(w) =
∑

p:doc[p]=w

(C1(p)) (1)

With unigram features, on this definition W(u)[v] is simply the count of how often u and v
co-occur in the corpus within l/2 words of each other, where l is the chosen window-width for
the C1 vectors.

As already noted, Schütze (1998) suggested an alternative second-order context vector,C2(p),
for a particular position p , or equivalently, particular token of a word. In its simplest incarnation,
it is simply the sum of the word vectors of words in the window

C2(p) =
∑

p′∈winl(p),p′ �=p

(W(doc[p′])) (2)

This C2 notion has to be elaborated a little further, but first let us define first and second order
sense vectors. Ifw is an ambiguous word andP is a set of positions exhibiting a particular sense,
then the centroid of the context-vectors for the occurrences in P is a candidate representation
of the sense:

Definition 3 (First- and second-order sense vector, S1, S2). If P is a set of positions, the first-
order sense and second-order sense vectors based on P are S1(P) = 1

|P|
∑

p∈P C
1(p) and

S2(P) = 1
|P|

∑
p∈P C

2(p)

In (2), every p′ ∈ winl(p) is summed over, but it is natural to consider restricting the sum to
positions featuring words in a specified vocabulary, a vocabulary which need not coincide with
the vocabulary used by the word vectors themselves: in Schütze (1998), it does not4. As a step
towards addressing this, define firstWM as the matrix of all word vectors:

Definition 4 (Word Matrix). Let WM be a f1 × f2 matrix, with f1 the size of some chosen
vocabulary Σ and f2 the size of the feature set used by the word vectors. The ith row ofWM is
the word vector for the ith word in Σ.

A C2-definition parametrised by a word-matrix can then be given:

Definition 5 (second-order context vector (with parameterWM)). Given a f1×f2 word matrix
WM, of word vectors for words in some chosen vocabulary Σ of size f1, if C1(p) is the f1-
dimensional first-order context vector representation of position p (using Σ for features), then
C2(p) the f2-dimensional second-order context vector representation of position p is defined by

C2(p) = C1(p)×WM (3)

4He sums word vectors for the top 20,000 most frequent words (excluding function words) and uses the top
2,000 most frequent words (excluding function words) as features of these. So, in our notation we say that Schütze
(1998) specifies dimensionalities of f1 = 20, 000 and f2 = 2, 000.
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This formulation of the C2 construction is not the customary one, but we think a useful one.
Although (3) and (2) look different, (3) is also defining C2(p) to be a sum of multiples of
relevant rows ofWM, and in fact, if f1 is defined so that there is a row ofWM for every word
in winl(p), it is easy to see that then (3) and (2) define the same vectors. Moreover, it is not
hard to show that the relation between C1 and C2 vectors exemplified in (3) lifts to a relation
between S1 and S2, given the definition of sense vectors as averages over C1 and C2 vectors:

S2(P) = S1(P)×WM (4)
Because the word vectors on the rows of WM are typically shorter than the height of WM
i.e. f2 < f1, equation (3) typically represents a dimensionality lowering transformation. It is
interesting to note, that formulating the C2 construction as we have, (3) is strikingly similar to
the defining equations for dimensionality reduction via Singular Value Decomposition (SVD).
If A is a M × N matrix, it has a so-called ’reduced-rank SVD’ Â = Uk × Sk × (Vk)

′ (see
Manning et al. (2008)), where amongst other things, Vk has the first k eigenvectors of A × A′

for columns. Via the SVD, an N dimensional vector t is projected to a k-dimensional t̂ by

t̂ = t× Vk (5)

Applied to any A whose rows have same dimensionality as that of C1 vectors, the SVD di-
mensionality reduction procedure would lead via (5) to a transformation of aC1 vector by post-
multiplying by Vk, a matrix of dimensions f1 × k. The C2 construction as defined in (3) also
post-multiplies C1 by matrixWM, the f1 × f2 word-matrix.

Although the definition of C2 can be elaborated further, these definitions should suffice for the
experiments that follow.

3. Experiments
3.1. Corpora

The experiments to be reported make use of two datasets. One is the hard-interest-line-serve
dataset (henceforth called “the HILS dataset”) widely used in the word-sense disambiguation
literature5. For each target word it contains sense-tagged short context samples from newspaper
articles written between 1987 and 1991. See Figure 2 for the number of instances of each target
word and their sense distribution. The second dataset is a larger corpus of untagged articles
from the New York Times (NYT) from the 1998-2000 period6. The NYT dataset consists of
1.92× 108 tokens distributed in 205990 articles.

The untagged NYT dataset is used in several different ways. We use the pseudoword technique
(Yarowsky, 1993) whereby occurrences of two unrelated words (for example banana andmoon)
are replaced by their concatenation (banana_moon), creating a resolution task to revert each
pseudoword correctly to the word replaced. Applied carefully, this generates a larger number
of training and test instances than in a sense-tagged corpus. We use the pseudowords introduced
by de Marneffe and Dupont (2004). We list them here with their total number of occurrences
and their constituent distribution in the NYT: animal_river (total: 11808, animal: 33%, river:
67%), banana_moon (total: 3953, banana: 24%, moon: 76%), data_school (total: 49498,

5This dataset is in the public domain and can be freely downloaded from http://www.d.umn.edu/~tpederse/data.html
6The NYT articles are part of the AQUAINT Corpus:
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002T31
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Figure 2: HILS dataset sense distributions

data: 21%, school: 79%), railway_admission (total: 3733, railway: 14%, admission: 86%)
and rely_illustration (total: 4970, rely: 78%, illustration: 22%). In work with C2 vectors, the
NYT dataset is also a possible source of the word vectors used in their construction. Finally, it
is possible to perform unsupervised experiments on the untagged NYT and evaluate this via the
HILS set, as will be seen in section 3.4.

3.2. Geometric properties of C1 and C2 vectors

Figure 3: A depiction of parallelism and spread in sense vectors representing two senses for
hard – On the left-hand side, we measure how parallel different-order sense representations of

the same sense are between each other. On the right-hand side, we measure how spread
same-order sense vectors representing different senses are between each other.

Since the general philosophy of the Vector Space Model is to model meanings with vectors, and
to model semantic relations with geometrical notions based on these vectors, it is reasonable to
consider ways to compare the geometry of sets of modelled meanings under the first-order and
second-order approaches.

Parallelism If Pi is all positions instantiating a particular sense si of an ambiguous item,
one can take the alternative sense vectors S1(Pi) and S2(Pi) and assess how parallel they are
to each other, by computing their cosine. The left-hand side of Figure 3 shows two examples
of how parallel an S1 vector and an S2 vector can be, both representing the sense difficult of
the adjective hard. The more parallel (and therefore more similar) they are, the more they are
approximations of each other.

To ensure the C1 and C2 vectors (and thereby derived S1 and S2 vectors) have the same dimen-
sions, we use unigrams for their features, from a vocabularyΣf2 , and build a square f2×f2word-
matrix. We can then make f2-dimensional C1 vectors, which convert to further f2-dimensional
C2 vectors (see definition 5). For the HILS data, the word-matrix used in the derivation of C2

vectors was computed once in a local fashion and once in a global fashion (Schütze, 1998; Pu-

randare and Pedersen, 2004). In the local variant, for each sub-corpus T of the HILS dataset,
the word vectors making up the word-matrix are computed from occurrences in T , using all its
non-stop words, NS(T ), as the features Σf2 . In the global variant, word vectors are instead
computed from the NYT corpus, using NS(NY T ) ∩NS(T ) for features of the word vectors,
where NS(NY T ) are the 20k most frequent non-stop words in the NYT corpus7. The idea is
to have the word vectors determined from a much larger data set, containing word-occurrences
that are not constrained to be in the vicinity of one of the words in the HILS dataset. For the
pseudoword data, the word vectors were always computed in the local fashion.

WORD

PARALLELISM SPREAD
LOCAL GLOBAL LOCAL GLOBAL

S1 ‖ S2 S1 ‖ S2
Ŵ

S1 ‖ S2 S1 ‖ S2
Ŵ

S1 S2 S2
Ŵ

S2 S2
Ŵ

hard .14 .18 .48 .49 .23 .99 .99 .98 .98
interest .27 .33 .36 .38 .13 .85 .85 .91 .95
line .35 .33 .40 .42 .14 .93 .95 .95 .96
serve .50 .45 .50 .54 .14 .74 .85 .89 .87

animal_river .64 .68 .42 .99 .99
banana_moon .45 .49 .23 .99 .98
data_school .62 .64 .26 .96 .96

railway_admission .57 .59 .28 .98 .98
rely_illustration .61 .61 .14 .79 .95

Table 1: Summary of geometric experiment results

Under parallelism, local in Table 1, column S1 ‖ S2 reports the average of cosine measures
between first-order representations and second-order representations,
1
N

∑N
i=1 cos

[
S1(Pi), S2(Pi)

]
, for all senses si of each target word in the local variant. Column

S1 ‖ S2Ŵ shows outcomes when the rows of the word-matrix are L2-normalised (euclidean
length). global gives the global variant. For neither the local nor the global variants would
one say that these cosine values indicate that the derived S1 and S2 vectors are approximately
parallel. For most of the HILS items, the average cosine scores increased in moving from
the local to the global calculation of the word vectors, but still did not result in approximately
parallel vectors. For the pseudowords, although the parallelism is higher, they still cannot be
fruitfully thought of as approximately parallel to each other.

Spread Another comparison that can be made concerns the angular spread, as measured by
cosine similarity, amongst the sense vectors for different senses of a given word. The right-hand
side of Figure 3 shows examples of low and high spread of two same-order sense vectors for
different senses of the word hard. Intuitively, a high angular spread will benefit a sense disam-
biguation or discrimination algorithm, whereas a low spread will make distinguishing amongst
senses more difficult. In this work, spread is measured by taking the average of pairwise cosine
measures between sense vectors of the same order that represent different senses of an ambigu-
ous word. Table 1 gives the outcomes, with the same settings used as for the consideration of
parallelism. Under spread, local and global the cosine averages are given for each ambiguous
item for the sense vector types S1, S2 and S2Ŵ. For both the HILS and the pseudoword data,
first-order sense representations are far more spread (lowest average cosine scores) than their
second-order counterparts, with the global variants being still even less spread than the local.

In order to further contrast these representations, we perform supervised word-sense disam-
7using 20k to abbreviate 20× 103
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biguation and unsupervised word-sense discrimination experiments. In all of these experiments
we employed context vectors and word matrices using the same local and global dimensions
used in the geometry experiments above.

3.3. Supervised word-sense disambiguation experiments

A Rocchio classifier was implemented: for each sense in training data, a sense vector is com-
puted (S1 or S2), and then the context vector (C1 orC2) of an ambiguous test-item is categorised
by assignment to the nearest candidate sense vector, as measured by cosine.

Experiments were done both with HILS data and the pseudoword data. The data for an am-
biguous item was randomly split into 60% training and 40% test. To ensure robustness, four
independent splits were done and results are reported as averages over these splits. Performance
is evaluated via a precision score representing the percentage of test context vectors assigned
to their correct senses. In computing C2 vectors, the local approach was taken, so with word
vectors computed from the sub-corpus of occurrences of the ambiguous item. The outcomes
are shown in Table 2 under the supervised header.

For the HILS and pseudoword data, C1 vectors outperformed C2 and C2
Ŵ vectors. And in three

out of four HILS cases, and all pseudoword cases, C2
Ŵ vectors outperformed C2 vectors. These

results mirror to a large extent the behaviours observed in the geometric experiments, specifi-
cally in the spread experiments: since second-order sense vectors are not very spread out, it is
difficult for the Rocchio classifier to correctly assign a sense to an instance.

For the pseudoword data the gap between C1 and C2
Ŵ was smaller, and overall the pseudoword

results are across the board significantly higher than the HILS target word results. This is
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done on pseudowords tend to report higher results than the same experiments done on real
ambiguous words (Gaustad, 2001).

A majority sense baseline can also be seen in Table 2 under column M. C1 vectors outperform
this baseline more often than the other two context vectors, but C2

Ŵ come at a close second
place.

3.4. Unsupervised word-sense discrimination experiments

For the unsupervised experiments a training set of context vectors of an ambiguous item are
clustered via the K-Means algorithm8. Assuming a 1-to-1 sense/cluster relationship,K is set to
the number of senses of the ambiguous item. In the standard K-Means formulation, the metric
that decides the assignment of a data point to a cluster is the L2 (euclidean length) distance.
However, to ensure symmetry with the supervised experiments we also carried out experiments
using cosine as the assignment metric. A clustering is evaluated using Purandare and Peder-
sen’s (2004) method: items from a test set are assigned to their nearest cluster centres and for
each possible sense-to-cluster mapping, a precision score on the test set is determined, with the
maximum of these reported as the final score. Two types of experiments are done using the
HILS data. A ‘local’ type uses the same training-test splits as in section 3.3; results are reported
in Table 2 under (trn & tst: HILS). A ‘global’ type trains on the NYT and then uses the full HILS
target word sub-corpora for the evaluation; results are reported under (trn: NYT, tst: HILS). Ex-

8We used a modified version of Wei Dong’s implementation: http://www.cs.princeton.edu/~wdong/kmeans/

WORD M
SUPERVISED UNSUPERVISED (L2) UNSUPERVISED (cos)

trn & tst: HILS trn & tst: HILS trn: NYT, tst:HILS trn & tst: HILS trn: NYT, tst:HILS

C1 C2 C2
Ŵ

C1 C2 C2
Ŵ

C1 C2 C2
Ŵ

C1 C2 C2
Ŵ

C1 C2 C2
Ŵ

hard 80 79 76 69 79 60 52 77 62 45 57 66 71 66 62 51
interest 53 78 60 71 46 32 42 50 47 59 47 55 49 48 49 59
line 53 77 48 69 50 31 36 53 39 51 43 38 44 44 47 52
serve 41 81 63 70 39 38 50 44 50 62 54 54 53 59 47 61
AVERAGE 57 79 62 70 54 40 45 56 49 55 50 53 54 54 51 56

trn & tst: NYT trn & tst: NYT trn & tst: NYT

PSEUDOWORD M C1 C2 C2
Ŵ

C1 C2 C2
Ŵ

C1 C2 C2
Ŵ

animal_river 67 85 65 79 67 67 63 67 66 57
banana_moon 76 88 66 82 75 74 75 69 73 65
data_school 79 83 82 87 73 77 68 58 77 64

railway_admission 86 90 68 83 83 71 56 70 77 58
rely_illustration 78 90 85 87 78 79 81 82 83 79

AVERAGE 77 87 73 84 75 74 69 69 75 65

Table 2: Performance results for Supervised Rocchio word-sense disambiguation experiments
and Unsupervised K-Means word-sense discrimination experiments

periments are also done with the NYT pseudoword data. For increased robustness, we run each
K-Means experiment 10 times with different sets of randomly chosen initial cluster centres. The
evaluation scores of these 10 runs are averaged. For the local experiments, the 10-run averages
for each splitting are in turn averaged again to provide an overall precision score for each target
word.

The top part of Table 2 shows L2 and cosine HILS results, under unsupervised (l2) and unsuper-
vised (cos), respectively, which are then divided into local experiments results (trn & tst: HILS)
and global experiments results (trn: NYT, tst: HILS). It is clear from the table that supervised re-
sults are far superior to the unsupervised results, with the C1 roughly following the distribution
of the predominant sense (columnM). In general, it is difficult for context-based WSD systems
to outperform this baseline (McCarthy et al., 2004). It seems that global training tends to benefit
all three types of context vectors when clustering by L2 K-Means, even if its benefit is modest
for cosine K-Means. Within the L2 K-Means case, the local C1 vectors perform better than the
other two types of second-order context vectors, largely reflecting the geometry predictions.
However, the global C2

Ŵ turns out somewhat comparable to C1. Across the cosine K-Means
experiments (local and global), results for the two types of second-order context vectors have
mixed performance in relation to the baseline but remain comparable to C1. It can be seen that
C2
Ŵ vectors outperform the baseline 7 times, followed by C1 at 4 times and then the C2 at 3

times. The target word where the baseline is outperformed more often is serve, which is the
word that has a more balanced sense distribution (see Figure 2).

In the pseudowords (bottom part of Table 2), C2 vectors follow the baseline closely in L2 and
cosineK-Means. L2C1 scores follow the baseline closer than cosineC1 scores, whileC2

Ŵ scores
tend to stray below the baseline for both L2 and cosine K-Means, with the notable exception of
rely_illustration, a pseudoword that tends to have good results across the board possibly because
it is made up of words with mixed parts of speech (a verb and a noun), making discrimination
easier.
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4. Comparisons and Conclusions
Purandare and Pedersen (2004) report a number of experiments on word-sense discrimination,
and contrast first-order and second-order outcomes. They evaluate on two separate sense-tagged
corpora: a version of the HILS dataset and a smaller dataset derived from the SENSEVAL-2
dataset which has 10 times fewer examples per sense than the HILS dataset. They found that
second-order outcomes exceeded first-order on the smaller data set, but that first-order outcomes
exceeded second-order on the larger data set. As we argue below, however, inspection of their
definitions reveals that they are not really comparing minimal pairs in the first and second order
versions.

In all our experiments the features of vectors have been identifiable with unigrams. Purandare
and Pedersen (2004) work also with features they term co-occurrences. Each such feature is
identifiable with an unordered pair {x, y} and a stretch of text instantiates the feature if x and y
occur within a small distance of each other, in any order9. Given a chosen set of co-occurrence
features,Fco, a word-matrix suitable for use in the construction ofC2 vectors can be constructed
by building a matrix WMco such that WMco[x][y] records the frequency of the co-occurrence
feature {x, y} in an entire corpus10. As we have done, they then represent a 20-word window
centred at a particular token with a C2 vector derived by summing the rows of WMco for the
words in that window. LetFuni be the unigrams which appear in the chosen set of co-occurrence
features Fco. Their procedure for constructing C2 vectors is equivalent to multiplying a C1

vector using unigram features Funi by the word matrixWMco (definition 5):

C2(p) = C1
Funi

(p)×WMco

The natural comparison to make is between outcomes with these C2 vectors and outcomes with
theirC1

Funi
counterparts before post-multiplication by the word-matrix. However, this is not the

comparison made by Purandare and Pedersen (2004): in their first-order experiments, they rep-
resent the 20-word window centred around an occurrence of w by the values of co-occurrence
features {x, y} in that window11. These are C1

Fco
vectors.

Thus it seems fair to say that the conclusions they draw concerning dependency on the size of the
data set are not based on contrastingminimal pairs. Rather than contrasting outcomeswith a par-
ticular kind of C1 vector with those that would be obtained simply by post-multiplying exactly
those C1 vectors by some kind of word-matrix, they are contrasting co-occurrence based C1

Fco

with the post-multiplication of unigram-based C1
Funi

. Their findings concerning dependency
on the size of the data-set are thus potentially attributable to factors other than the first-order
vs. second-order contrast. In our experiments we did not systematically vary the size of the
data set and it remains for future work to revisit this size dependency issue with more strictly
comparable first- and second-order representations.

In this work, we contrasted C1
Funi

versus C2
Funi

. The geometric experiments as well as the
supervised word-sense disambiguation experiments suggest that in this simplest configuration,

9Mostly this distance is set to be 3 words or less. They also work with an ordered variant, of which detailed
discussion we omit for space reasons.
10Instead of a count, a statistical association score might be recorded. They also further apply SVD-based dimen-
sionality reduction to obtain ŴM , with a reduced dimensionality version of each row ofWM . For the point we
wish to make these details do not matter.
11The x and y of the co-occurrence feature are unrelated to the wordw which centres the context, save for needing
to be instantiated in the window around that occurrence of w
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C1 vectors are better than C2 vectors. In the supervisedWSD experiments, the C1 vectors beat
both variants of C2 vectors on all of the HILS words and on 4 of the pseudowords, out of a total
of 5. On both datasets C1 vectors beat the M baseline in 8 out of 9 cases and C2

Ŵ does so in 7
out of 9 cases.

In the unsupervised experiments, on the average the C1 vectors and C2 vectors outcomes are
much closer together, and for the HILS data, best outcomes are about 25% down from the
supervised case, whilst for the pseudoword data, the fall is around 12%; thus the multiway
ambiguity of the HILS data versus the 2-way ambiguity of the pseudoword data seems to be
particularly challenging to the unsupervised methods. On the pseudowords, the M baseline is
seldom beaten, and the advantage of C1 vectors over C2 vectors from the supervised case is
not replicated. On the HILS data, only for serve is the M baseline often beaten. Across the
representations, the ‘global’ version with clustering on the large NYT corpus performed better
than the ‘local’ version, which clusters on a subset of the HILS. And again, the advantage of
C1 vectors over C2 vectors from the supervised case is not replicated, with varying outcomes
across the words, and a close final average.

Thus these experiments have shown an advantage of C1 vectors over C2 vectors for the super-
vised case, and no clear winner for the unsupervised case. It has to be stressed that the setting
used for C1 vectors and C2 vectors were in many respects, the simplest possible, and a different
picture might emerge under different settings. In future work we will embark on experiments
exploring those settings, such as weighting schemes, alternative feature selection schemes, the
effects of applying SVD to the different objects involved and alternative C2-construction oper-
ations to summation and averaging.
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