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Abstract
In this work, we show that Kleinberg’s hubs and authorities model is closely related to both correspon-
dence analysis, a well-known multivariate statistical technique, and a particular Markov chain model
of navigation through the web. The only difference between correspondence analysis and Kleinberg’s
method is the use of the average value of the hubs (authorities) scores for computing the authorities
(hubs) scores, instead of the sum for Kleinberg’s method. We also show that correspondence analysis
and our Markov model are related to SALSA, a variant of Kleinberg’s model. We finally suggest that
the Markov model could easily be extended to the analysis of more general structures, such as relational
databases.

1. Introduction

Exploiting the graph structure of large document repositories, such as the web environment,
is one of the main challenges of computer science and data mining today. In this respect,
Kleinberg’s proposition to distinguish web pages that are hubs and authorities (see Kleinberg,
1999); called the HITS algorithm) has been well-received in the community.

In this paper, we show that Kleinberg’s hubs and authorities procedure (Kleinberg, 1999) is
closely related to both correspondence analysis (see for instance Greenacre, 1984 ; Lebart et
al., 1995), a well-known multivariate statistical analysis technique, and a particular Markov
chain model of navigation through the web. We further show that correspondence analysis and
the Markov model are related to SALSA (Lempel and Moran, 2001), a variant of Kleinberg’s
model. This puts new lights on the interpretation of Kleinberg’s procedure since correspondence
analysis has a number of interesting properties that makes it well suited for the analysis of
frequency tables. On the other hand, the Markov model can easily be extended to more general
structures, such as relational databases

In section 2, we briefly introduce the basics of Kleinberg’s procedure for ranking query’s re-
sults. In section 3, we introduce correspondence analysis and relate it to Kleinberg’s procedure
while, in section 4, we introduce a Markov model of web navigation and relate it to both corre-
spondence analysis and Kleinberg’s procedure.

2. Kleinberg’s procedure

In 1999, Kleinberg introduced a procedure for identifying web pages that are good hubs or
good authorities, in response to a given query. The following example is often mentioned.
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When considering the query “automobile makers”, the home pages of Ford, Toyota and other
car makers are considered as good authorities, while web pages that list these home pages are
good hubs.

2.1. The updating rule

To identify good hubs and authorities, Kleinberg’s procedure exploits the graph structure of the
web. Each web page is a node and a link from page a to page b is represented by a directed
edge from node a to node b. When introducing a query, the procedure first constructs a focused
subgraph G, and then computes hubs and authorities scores for each node of G. Let n be the
number of nodes of G. We now briefly describe how these scores are computed. Let W be
the adjacency matrix of the subgraph G; that is, element wij (row i, column j) of matrix W
is equal to 1 if and only if node (web page) i contains a link to node (web page) j; otherwise,
wij = 0. We respectively denote by xh and xa the hubs and authorities n × 1 column vector
scores corresponding to each node of the subgraph.

Kleinberg uses an iterative updating rule in order to compute the scores. Initial scores at k = 0
are all set to 1, i.e. xh = xa = 1 where 1 = [1, 1, . . . , 1]T is a n × 1 column vector made of
1. Then, the following mutually reinforcing rule is used: The Hub score for node i, xh

i , is set
equal to the normalized sum of the authority scores of all nodes pointed by i and, similarly,
the authority score of node j, xa

j , is set equal to the normalized sum of hub scores of all nodes
pointing to j. This corresponds to the following updating rule:

xh(k + 1) =
Wxa(k)

‖Wxa(k)‖2

(1)

xa(k + 1) =
WTxh(k)

‖WTxh(k)‖2

(2)

where ‖x‖2 is the Euclidian norm, ‖x‖2 = (xTx)1/2.

2.2. An eigenvalue/eigenvector problem

Kleinberg (1999) showed that when following this update rule, xh converges to the normalized
principal (or dominant) right eigenvector of the symmetric matrix WWT, while xa converges to
the normalized principal eigenvector of the symmetric matrix WTW, provided that the eigen-
values are distinct.

Indeed, the equations (1), (2) result from the application of the power method, an iterative
numerical method for computing the dominant eigenvector of a symmetric matrix (Golub and
Loan, 1996), to the following eigenvalue problem:

xh ∝ Wxa ⇒ xh = µWxa (3)

xa ∝ WTxh ⇒ xa = ηWTxh (4)

where ∝ means “proportional to” and T is the matrix transpose. Or, equivalently,

xh
i ∝

n∑
j=1

wijx
a
j ⇒ xh

i = µ
n∑

j=1

wijx
a
j (5)

xa
j ∝

n∑
i=1

wijx
h
i ⇒ xa

j = η

n∑
i=1

wijx
h
i (6)
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Meaning that each hub node, i, is given a score, xh
i , that is proportional to the sum of the

authorities nodes scores to which it links to. Symmetrically, to each authorities node, j, we
allocate a score, xa

j , which is proportional to the sum of the hubs nodes scores that point to it.
By substituting (3) in (4 ) and vice-versa, we easily obtain

xh = µηWWTxh = λWWTxh

xa = µηWTWxa = λWTWxa

which is an eigenvalue/eigenvector problem.

2.3. A variant of Kleinberg’s procedure

Many extensions of the updating rules (1), (2) were proposed. For instance, in Lempel and
Moran (2001) (the SALSA algorithm), the authors propose to normalise the matrices W and
WT in (3) and (4) so that the new matrices verify W′1 = 1 and

(
WT

)′
1 = 1 (the sum of the

elements of each row of W′ and
(
WT

)′
is 1). In this case, (3) and (4) can be rewritten as

xh
i ∝

n∑
j=1

w′
ijx

a
j =

n∑
j=1

wijx
a
j

wi.

, where wi. =
n∑

j=1

wij (7)

xa
j ∝

n∑
i=1

w′
ijx

h
i =

n∑
i=1

wijx
h
i

w.j
, where w.j =

n∑
i=1

wij (8)

This normalization has the effect that nodes (web pages) having a large number of links are not
privileged with respect to nodes having a small number of links. In the next section,we will
show that this variant of Kleinberg’s procedure is equivalent to correspondence analysis.

3. Correspondence analysis and Kleinberg’s procedure

Correspondence analysis is a standard multivariate statistical analysis technique aiming to anal-
yse frequency tables (Greenacre, 1984; Mardia et al., 1979; Lebart et al., 1995).

3.1. Correspondence analysis

Imagine that we have a table of frequencies, W, for which each cell, wij , represents the number
of cases having both values i for the row variable and j for the column variable (we simply
use the term “value” for the discrete value taken by a categorical variable). In our case, the
records are the directed edges; the row variable represents the index of the origin node of the
edge (hubs) and the column variable the index of the end node of the edge (authorities).

Correspondence analysis associates a score to the values of each of these variables. These scores
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relate the two variables by what is called a “reciprocal averaging” relation (Greenacre, 1984):

xh
i ∝

n∑
j=1

wijx
a
j

wi.
, where wi. =

n∑
j=1

wij (9)

xa
j ∝

n∑
i=1

wijx
h
i

w.j
, where w.j =

n∑
i=1

wij (10)

which is exactly the same as (7) and (8). This means that each hub node, i, is given a score, xh
i ,

that is proportional to the average of the authorities nodes scores to which it links to. Symmet-
rically, to each authorities node, j, we allocate a score, xa

j , which is proportional to the average
of the hubs nodes scores that point to it.

3.2. Links with Kleinberg’s procedure

Notice that (9) and (10) differ from (5) and (6) only by the fact that we use the average value
in order to compute the scores, instead of the sum.

Now, by defining the diagonal matrix Dh = diag(1/wi.) and Da = diag(1/w.j) containing the
number of links, we can rewrite (9) and (10) in matrix form

xh ∝ DhWxa = µDhWxa (11)

xa ∝ DaWTxh = ηDaWTxh (12)

In the language of correspondence analysis, the row vectors of DhW are the hub profiles, while
the row vectors of DaWT are the authorities profiles. These vectors sum to one.

Now, from (11), (12), we easily find

xh = µηDhWDaWTxh = λDhWDaWTxh (13)

xa = µηDaWTDhWxa = λDaWTDhWxa (14)

Correspondence analysis computes the subdominant right eigenvector of DhWDaWT and
DaWTDhW. Indeed, it can be shown that the right principal eigenvector (the largest one)
is a trivial one, [1, 1, . . . , 1]T with eigenvalue λ = 1 (all the other eigenvalues are positive and
smaller that 1; see Greenacre, 1984) since the column values of DhWDaWT (respectively
DaWTDhW) sum to one for each row. Therefore, correspondence analysis computes the
second largest eigenvalue, called the subdominant eigenvalue, as well as the corresponding
eigenvector.

In standard correspondence analysis, this subdominant right eigenvector has several interesting
interpretations in terms of “optimal scaling”, of the “best approximation” to the original matrix
or of the linear combinations of the two sets of values that are “maximally correlated”, etc. (see
for instance Greenacre, 1984; Lebart et al., 1995). With respect to this last interpretation, it can
be shown that correspondance analysis computes maxa,b

[
corr

(
Wa,WTb

)]
.

The next eigenvectors can be computed as well; they are related to the proportion of chi-square
computed on the original table of frequencies that can be explained by the m first eigenvectors.
Correspondence analysis is therefore often considered as an “equivalent” of principal compo-
nents analysis for frequency tables.
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4. A Markov chain model of web navigation

We now introduce a Markov chain model of random web navigation that is equivalent to corre-
spondence analysis, and therefore closely related to Kleinberg’s procedure. It therefore provides
a new interpretation for both correspondence analysis and Kleinberg’s procedure. Notice that
this random walk model is very similar to the one proposed in Lempel and Moran (2001) (for
other random walk models, see also the PageRank system (Page et al., 1998; Ng et al., 2001),
and has some interesting links with diffusion kernels (Kondor and Lafferty, 2002), or with
a measure of similarity between graphs vertices that was proposed in Blondel and Senellart
(2002), which we are currently investigating.

4.1. Definition of the Markov chain

We first define a Markov chain in the following way. We associate a state of the Markov chain
to every hub and every authority node (2n in total); we also define a random variable, s(k),
representing the state of the Markov model at time step k . Moreover, let sh be the subset of
states that are hubs and sa be the subset of states that are authorities. We say that sh(k) = i
(respectively sa(k) = i) when the Markov chain is in the state corresponding to the ith hub
(authority) at time step k. As in Lempel and Moran (2001), we define a random walk on these
states by the following single-step transition probabilities

P(sh(k + 1) = i|sa(k) = j) =
wij

w.j
, where w.j =

n∑
i=1

wij (15)

P(sa(k + 1) = j|sh(k) = i) =
wij

wi.
, where wi. =

n∑
j=1

wij (16)

P(sa(k + 1) = j|sa(k) = i) = P(sh(k + 1) = j|sh(k) = i) = 0 , for all i, j (17)

In other words, to any hub page, sh(k) = i, we associate a non-zero probability of jumping to
an authority page, sa(k + 1) = j, pointed by the hub page (equation 16), which is inversely
proportional to the number of directed edges leaving sh(k) = i. Symmetrically, to any authority
page sa(k) = i, we associate a non-zero probability of jumping to a hub page sh(k + 1) = j
pointing to the authority page (equation 15), which is inversely proportional to the number of
directed edges pointing to sa(k) = i. We suppose that the Markov chain is irreducible, that
is, every state can be reached from any other state. If this is not the case, the Markov chain
can be decomposed into closed sets of states which are completely independent (there is no
communication between them), each closed set being irreducible. In this situation, our analysis
can be performed on these closed sets instead of the full Markov chain.

Now, if we denote the probability of being in a state by xh
i (k) = P(sh(k) = i) and xa

i (k) =

P(sa(k) = i), and we define Ph as the transition matrix whose elements are ph
ij = P(sh(k+1) =

j|sa(k) = i) and Pa as the transition matrix whose elements are pa
ij = P(sa(k+1) = j|sh(k) =

i), from equations (15) and (16),

Ph = DaWT

Pa = DhW
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The Markov model is characterized by

xh
i (k + 1) = P(sh(k + 1) = i) =

n∑
j=1

P(sh(k + 1) = i|sa(k) = j) xa
j (k)

=
n∑

j=1

ph
ji x

a
j (k)

xa
i (k + 1) = P(sa(k + 1) = i) =

n∑
j=1

P(sa(k + 1) = i|sh(k) = j) xh
j (k)

=
n∑

j=1

pa
ji x

h
j (k)

Or, in matrix form,

xh(k + 1) = (Ph)Txa(k) (18)

xa(k + 1) = (Pa)Txh(k) (19)

It is easy to observe that the Markov chain is periodical with period 2: each hub (authority) state
could potentially be reached in one jump from an authority (hub) state but certainly not from
any other hub (authority) state. In this case, the set of hubs (authorities) corresponds to a subset
which itself is an irreducible and aperiodic Markov chain whose evolution is given by

xh(k + 2) = (Ph)T(Pa)Txh(k) = (Qh)Txh(k) (20)

xa(k + 2) = (Pa)T(Ph)Txa(k) = (Qa)Txa(k) (21)

where Qh and Qa are the transition matrices of the corresponding Markov models for the hubs
and authorities. This Markov chain is aperiodic since each link (corresponding to a transition)
can be followed in both directions (from hub to authority and from authority to hub) so that,
when starting from a state, we can always return to this state in two steps. Hence, all the
diagonal elements of Qh and Qa are non-zero and the Markov chain is aperiodic.

Therefore, the transition matrices of the corresponding Markov chains are

Qh = PaPh = DhWDaWT (22)

Qa = PhPa = DaWTDhW (23)

The matrices appearing in these equations are equivalent to the ones appearing in (13), (14).
We will now see that the subdominant right eigenvectors of these matrices (which are computed
in correspondence analysis) have an interesting interpretation in terms of the distance to the
“steady state” of the Markov chain.

4.2. Interpretation of the subdominant right eigenvector of Qh, Qa

Now, it is well-know that the subdominant right eigenvector of the transition matrix, Q, of an
irreducible, aperiodic, Markov chain measures the departure of each state from the “equilibrium
position” or “steady-state” probability vector (see for instance Stewart, 1994; a proof is provided
in appendix 6), π, which is given by the first left eigenvector of the transition matrix Q:
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QTπ = π subject to
n∑

i=1

πi = 1 (24)

with eigenvalue λ = 1. This principal left eigenvector, π, is unique and positive and is called
the “steady state” vector. This “steady state” vector, π, is the probability of finding the Markov
chain in state s = i in the long-run behavior:

lim
k→∞P(s(k) = i) = πi (25)

and is independent of the initial distribution of states at k = 0. It represents the probability of
being in a particular state in the long-run behaviour.

In appendix 6, we show that the elements of the subdominant right eigenvector of Q = Qh or
Qa can be interpreted as a “distance” from each state to its “steady-state” value, provided by π.
The states of the Markov chain are often classified or clustered by means of the values of this
subdominant eigenvector as well as the few next eigenvectors.

Notice that we compute the subdominant eigenvector because the right dominant eigenvector is
1, since the sums of the columns of Q is one (Q1 = 1), so that 1 is in fact the right dominant
eigenvector of Q with eigenvalue 1. Indeed, from the theory of nonnegative matrices, this
eigenvalue is simple and is strictly larger in magnitude than the remaining eigenvalues.

4.3. Hubs and authorities scores

Lempel and Moran (2001), in the SALSA algorithm, propose, as hubs and authorities scores,
to compute the steady-state vectors, πh and πa, corresponding to the hubs matrix, Qh, and the
authorities matrix, Qa. We propose instead or, more precisely, in addition, to use the subdomi-
nant right eigenvector, which produces the same results as correspondence analysis, and which
is often used in order to characterise the states of the Markov chain.

Indeed, in the appendix, we show that the behavior of the Markov model can be expanded into
a series of left/right eigenvectors (see equation (32)). The first term is related to the steady-
state vector, while the second to the time needed to reach this steady state. Eventually, the next
eigenvector/eigenvalue could be computed as well; it corresponds to second-order corrections.
Of course, only experimental results could confirm this choice; we are currently performing
experiments investigating this issue.

4.4. Computation of the steady-state vector

In Lempel and Moran (2001), it is shown that, in our case, the steady-state vectors πh and πa

are given by

πh
i =

n∑
j=1

wij

n∑
i=1

n∑
j=1

wij

=
wi.

w..
(26)

πa
j =

n∑
i=1

wij

n∑
i=1

n∑
j=1

wij

=
w.j

w..
(27)
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which are the marginal proportions of the frequency table W. It is therefore not necessary to
compute the eigenvector. This is in fact a standard result for a random walk on a graph (see for
instance Ross, 1996). From the theory of finite-state irreducible and aperiodic Markov chains
(Cinlar, 1975; Bremaud, 1999), we know that there exists exactly one limiting density obeying
(26, 27), given by (24).

We saw that the subdominant eigenvector of Qh and Qa represents the departure from the
marginal proportions of the frequency table. This is quite similar to correspondence analysis
where the same eigenvectors are interpreted in terms of a chi-square distance to the “indepen-
dence model”, for which we assume P(sa(k) = i, sh(k) = j) = (wi.w.j)/(w2

..) (Greenacre,
1984; Lebart et al., 1995).

Moreover, the markov chain is reversible (see Ross, 1996). This has important implications.
For instance, it is known that all the eigenvalues of the transition matrix of a reversible Markov
chain are real and distinct (see for instance Bremaud, 1999).

4.5. The full Markov chain model

Finally, notice that (18), (19) can be rewritten as
[

xh(k + 1)
xa(k + 1)

]
=

[
0 (Ph)T

(Pa)T 0

] [
xh(k)
xa(k)

]
(28)

so that the transition matrix of the full Markov chain with state vector
[
(xh)T, (xa)T

]T
is

P =

[
0 Pa

Ph 0

]

If uh and ua are respectively eigenvectors of Qh and Qa, it is easy to show that the transition
matrix P2 has eigenvectors

[
(uh)T, 0T

]T
and

[
0T, (ua)T

]T
.

5. Possible extensions of Kleinberg’s model, based on correspondence anal-
ysis and the Markov chain model

The relationships between Kleinberg’s procedure, correpondence analysis and Markov models
suggest extensions of Kleinberg’s HITS algorithm in three differents directions:

1. The proposed random walk procedure can easily be extended to the analysis of more com-
plex structures, such as relational databases. Here is a sketch of the main idea. To each
record of a table, we associate a state; each table corresponding to a subset of states. For
each relation between two tables, we associate a set of transitions. This way, we can define
a random walk model and compute interesting information from it, such as the distance to
the steady state, the average first passage time from one state to another, etc, with the objec-
tive of computing similarities between states. This would allow us to compute similarities
between records (states) of a same table as well as records (states) belonging to different
tables of the database. These developments, as well as an experimental validation of the
method, will be the subject of a forthcoming paper. In the same vein, extensions of Klein-
berg’s procedure were also proposed in Blondel and VanDooren (2002), with the objective
of computing similarities between nodes of a graph. We also intend to generalize corre-
spondence analysis to multiple correspondence analysis (correspondence analysis applied
to multiple tables) by using the concept of stochastic complementation (Meyer, 1989).
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2. Instead of computing only the first eigenvalue/eigenvector, we could additionally com-
pute the next eigenvevalues/eigenvectors (as done in correspondence analysis) that could
also provide additional information, as already suggested by Kleinberg himself. With this
respect, notice that in correspondence analysis, each eigenvalue is directly related to the
amount of chi-square accounted for the corresponding eigenvector. This way, we extract
as many eigenvectors as there are significant eigenvalues.

3. The various interpretations of correspondence analysis put new light to Kleinberg’s proce-
dure. Moreover, extensions of correspondence analysis are available (for instance multiple
correspondence analysis); these extensions could eventually be applied in order to analyse
the graph structure of the web.

6. Conclusions and further work

We showed that Kleinberg’s method for computing hubs and authorities scores is closely related
to correspondence analysis, a well-known multivariate statistical analysis method. This allows
us to give some new interpretations to Kleinberg’s method. Also, this suggests to extract the
next eigenvalues/eigenvectors as well, since these could provide some additional information
(as is done in correspondence analysis).

We then introduce a Markov random walk model of navigation through the web, and we show
that this model is also equivalent to correspondence analysis. This random walk procedure has
an important advantage: it can easily be extended to more complex structures, such as relational
databases. These developments will be the subject of a forthcoming paper. In the same vein,
extensions of Kleinberg’s procedure were also proposed in Blondel and VanDooren (2002), with
the objective of computing similarities between nodes of a graph.
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APPENDIX: PROOF OF THE MAIN RESULTS

Appendix: Distance to the steady state vector

In this appendix, we show that the entries of the subdominant right eigenvector of the transition
matrix Q of a finite, aperiodic, irreducible, reversible, Markov chain can be interpreted as a
distance to the “steady-state” probability vector, π. From (22), (23), we can easily show that
Q has a positive real spectrum so that all its eigenvalues are positive real and its eigenvectors
are real. Moreover, since Q is stochastic nonnegative, all the eigenvalues are ≤ 1, and the
eigenvalue 1 has multiplicity one. The proof is adapted from Papoulis and Pillai, 2002; Stewart,
1994; Bremaud, 1999.

Let ei = [0, 0, . . . , 1, . . . , 0, 0]T be the column vector with ith component equal to 1, all others
being equal to 0. ei will denote that, initially, the system starts in state i. Since Q is aperiodic,
irreducible, and reversible, we know that Q has n simple, real, distinct, nonzero eigenvalues.

After one time step, the probability density of finding the system in one state is (see (18),(19))

x(1) = QTei
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After k steps, we have
x(k) =

(
QT

)k
ei

The idea is to compute the distance

di(k) =
∥∥∥(

QT
)k

ei − π
∥∥∥

2
(29)

in order to have an idea of the rate of convergence to the steady state when starting from a
particular state s = i.

Let (λi,ui), i = 1, 2, . . . n represent the n right eigenvalue-eigenvectors pairs of Q in decreasing
order of importance (of modulus). Thus

QU = UΛ (30)

where U is the n × n matrix made of the column vectors ui which form a basis of �n:
U = [u1,u2, . . . ,un], and Λ =diag(λi).

From (30),
Q = UΛU−1 = UΛV (31)

where we set V = U−1. We therefore obtain VQ = ΛV, where V = U−1 =

⎡
⎢⎢⎣

vT
1

vT
2
...

vT
n

⎤
⎥⎥⎦, so that

the column vectors vi are the left eigenvectors of Q , vT
i Q =λiv

T
i . Moreover, since VU = I,

we have vT
i uj = δij .

Hence from (31),

Qk = UΛkV

=
n∑

i=1

λk
i uiv

T
i

= 1πT +

n∑
i=2

λk
i uiv

T
i

= 1πT + λk
2u2v

T
2 + O

(
(n − 2)λk

3

)
(32)

since λi < 1 for i > 1 and the eigenvalues/eigenvectors are ordered in decreasing order of
eigenvalue magnitude. This development of the transition matrix is often called the spectral
decomposition of Qk.

Let us now return to (29)

di(k) =
∥∥∥(

QT
)k

ei − π
∥∥∥

2

� ∥∥(
π1T + λk

2v2u
T
2

)
ei − π

∥∥
2

� ∥∥π + λk
2v2u

T
2 ei − π

∥∥
2

� λk
2 ‖v2‖2 u2i

where u2i is ith component of u2. Since the only term that depends on the initial state, i, is u2i,
the eigenvector u2 can be interpreted as a distance to the steady-state vector.
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