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Abstract
The iterative spring model (Kopcsa and Schiebel, 1998) is a kind of multidimensional scaling algorithm (MDS)
based on point mass mechanics, that embeds objects in a two dimensional Euclidean space and allows to visualize
object relationships and cluster structure. This technique assumes that the similarity matrix for the data set under
consideration is symmetric. However there are many interesting problems where asymmetric proximities arise,
like text mining problems. In this work we propose a variety of improvements to this algorithm to deal with
asymmetric dissimilarities. Clustering quality and distances preservation of the resulting word maps are evaluated
through objective measures. The new asymmetric algorithms outperform both, their symmetric counterpart and
other widely used multidimensional scaling methods according to the objective measures computed.
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1. Introduction

Let X be ann × m (transposed) document matrix representingn words bym documents in
IRm. LetS be then×n matrix made up of word similarities (using a given similarity measure).
We are interested in the case where the matrixS is asymmetric, that is,sij 6= sji. This case
has been considered in the past; see for instance (Zielman and Heiser, 1996; Chen et al., 1996).
When distances are used instead similarities,dij = dji is assumed. To understand the need
for asymmetric similarity measures, consider that word associations are not symmetric: for in-
stance, most people will relate ‘data’ to ‘mining’ more strongly than conversely. Any similarity
measure to model the relation between these two words should not obey the constraintsij = sji.

There are a variety of techniques suitable to generate visual representations of such word re-
lations (word maps), such as MDS algorithms (Cox and Cox, 2001), correspondence analysis
(Lebart et al., 1984; Benz´ecri, 1992) and neural net based algorithms (Kohonen et al., 2000;
Muñoz, 1998). Word maps represent words (usually codified as vectors in a high dimensional
space) as points of a two dimensional Euclidean space. Several articles have empirically shown
that word maps are useful tools to discover vocabulary related to a given topic and are also
valuable to model relations among different topics in databases (Chen et al., 1998; Lin, 1997)

The previously mentioned algorithms can be applied in the asymmetric case if the similarity

matrix is first symmetrized (substitutesij by s∗ij, wheres∗ij =
sij + sji

2
). However, information
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provided by asymmetry is lost.

A number of MDS algorithms and neural net algorithms have been developed in the past (Con-
stantine and Gower, 1978; Okada, 1997; Zielman and Heiser, 1993; Chen et al., 1996; Saito,
1991) that deal with asymmetry from different viewpoints. For the task of word map generation
we are interested in algorithms able to achieve a balance between word clusters separation and
distances preservation. In (Kopcsa and Schiebel, 1998) it has been presented an iterative model
based on classic mechanics that complies with these two requirements. In addition, the authors
claim that convergence is faster than in most iterative MDS algorithms.

In this paper we generalize the algorithm of (Kopcsa and Schiebel, 1998) in a variety of ways
to the asymmetric case. The generalization will be achieved by first defining new asymmetry
coefficients that convey the information provided by asymmetry, and then incorporating them
into the algorithm in an appropriate manner.

The paper is organized as follows. Section 2 introduces the asymmetry coefficients. In sec-
tion 3 we present the new asymmetric models. In section 4 we study the performance of our
algorithms on a real text database and, finally, section 5 gets conclusions and points out some
directions for future work.

2. Asymmetry

Symmetric measures have been widely used in the context of information retrieval (Rorvig,
1999) These measures fail to accurately model similarity between words in the sense that se-
mantically close words often have low similarity coefficients (see (Muñoz, 1997) for details).
In a few words, theL1 norm of a word is the number of documents indexed by the word, and
due to Zipf’s law, the distribution ofL1 word norms (and therefore that ofL2 norms) is very
asymmetric (see figure 1) . This fact distorts distance comparisons between words that have
large differences in their norms.

In this section we first introduce two commonly used asymmetric measures that do not suffer
from this drawback and next we review some coefficients of asymmetry needed for the algo-
rithms proposed in section 3.

2.1. Asymmetry similarity measures

The first similarity measure introduced in this section, fuzzy logic similarity, has been wide-
ly used in the context of fuzzy logic models (Klir and Yuan, 1995) and information retrieval
(Rorvig, 1999). The second one is a well known probabilistic measure, the Kullback-Leibler
(K-L) divergence.

1. Fuzzy logic similarity is defined as

sij =
|xi ∧ xj |

|xi| =

∑
k |min(xik, xjk)|∑

k |xik|
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Figure 1: Frequency histogram for terms in the database used in section 4. Number of docu-
ments is the number of documents containing a given word

where∧ is the min fuzzy operator andL1 norm is used.sij may be interpreted as the de-
gree with which topic i is a subset of topic j (Kosko, 1991). Obviouslysij 6= sji allowing
to model accurately asymmetric relationships.

2. K-L divergence (Dagan et al., 1999) is defined as

dij = D(xi‖xj) =
∑
xk

p(xk|xi)log

(
p(xk|xi)

p(xk|xj)

)

wherep(xk|xi) denotes the probability that wordxk appears together withxi. K-L diver-
gence between wordxi andxj measures the distance between the probability distribution
functions associated to the context ofxi andxj . This means thatdij is small when words
that appear close toxi appear also close toxj .

2.2. Asymmetry coefficients

Asymmetry coefficients convey the information provided by asymmetry. We define two coef-
ficients, the first one derived from the fuzzy logic similarity introduced in section 2.1 and the
second one associated to the K-L divergence defined in the same section. LetD = (δij) be the
matrix of dissimilarities between object pairs. It is well known that any square non-symmetric
matrix can be decomposed into a symmetric and skew-symmetric component (Zielman and
Heiser, 1996)D = S + A wheresij =

(
δij+δji

2

)
andaij =

(
δij−δji

2

)
. It has been shown in

(Martin-Merino and Mũnoz, 2001) that only the skew-symmetric component provide informa-
tion about asymmetry.
If we computeaij for the fuzzy logic similarity,

aij ∝ |xi ∧ xj |
|xi| − |xj ∧ xi|

|xj | ∝ |xi| − |xj |
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that suggests that asymmetry is due to differences inL1 norm. So, the first coefficient we pro-
pose to model the skew-symmetric component of the dissimilarity matrix is a normalizedL1

norm

(
|xi| =

|xi|
maxl(|xl|)

)
that takes values in the[0, 1] interval. Intuitively speaking, this co-

efficient will become large for general (broad sense ) terms with largeL1 norms.

The second coefficient is related to the K-L divergence and may be computed as follows. We

first transform the K-L divergence into a similaritykij = 1 − dij

max dij

so thatkij ∈ [0, 1]. Then

we define the K-L coefficient of asymmetry aski =
∑

k kki, that inform about the grade with
which context ofxk (k = 1 . . . N) are a subset ofxi context. Intuitively speaking this coefficient
will become large for terms with a wide context (broad sense terms).

3. Iterative asymmetric spring models

In this section we briefly describe the basic idea of the iterative spring model proposed in (Kopc-
sa and Schiebel, 1998). Next we propose variants of the basic model that take into account the
asymmetric component of the dissimilarity matrix through the asymmetry coefficients defined
in section 2.2.

3.1. Iterative symmetric spring model revisited

This model is based on mass point mechanics. Each word is represented by a mass point and
they are connected to each other by springs of elasticity proportional to the similarity between
the words . The mass point coordinates are updated until convergence where the final point
distances represent the dissimilarity between the words. Letmi be the mass of each point,
∆xij = xj − xi, ki the frictional resistance coefficient andeij the elasticity coefficient. The
authors takeeij proportional to the transformed Jaccard similarity. Then the forces applied over
particle i are

fmi = −miẍi

fki = −kiẋi

feij = eij∆xij

wherefmi is the inertia force,fki is the frictional resistance force andfeij is the elasticity force.
In equilibrium the sum of all forces over particle i has to be 0, so

fmi + fki +
∑
j

feij = 0

or

−miẍi − kiẋi +
∑
j

eij∆xij = 0

that after approximations explained in (Kopcsa and Schiebel, 1998) gives a simple iterative
solution for the differential equation
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xi(t + 1) = xi(t) +
∆t

ki

∑
j

eij∆xij

where

eij =
Jij − T

max
ij

(Jij) − T

T is a experimental parameter that controls that forces between particles of the same cluster are
attractive and forces between particles of different clusters are repulsive. This feature decreases
clustering overlapping in the final word map.∆t is the step length andki = 1 for all particles.

3.2. New iterative asymmetric models

3.2.1. Incorporating asymmetry through resistance coefficients

In order to get a deeper understanding of our asymmetric models, let first study the interaction
between two terms(i, j) where i is a general term and j a specific term. According to the
symmetric model proposed in (Kopcsa and Schiebel, 1998) the forcesfi andfj are given by

fi = −kiẋi + eij∆xij

fj = −kj ẋj + eij∆xji

whereeij = eji andki = kj = 1. This means thatfi = −fj and the forces over each term are
the same although the specific terms should be attracted more strongly than the general terms
due to asymmetry.

We propose to give eachki a value proportional to any of the two coefficients of asymmetry
defined in section 2.2. In this way, general terms will have a large resistance coefficient and
specific terms a small one. Therefore, it can be easily seen that forces from general terms to
specific termsfij will be stronger than forces from specific terms to general (broad sense) terms
fji.

3.2.2. Incorporating asymmetry through asymmetric elasticities

Another interesting possibility to incorporate asymmetry is to define new asymmetric elasticity
coefficients in the following way,

eij = se
(s)
ij

lj
maxk(lk)

where
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se
(s)
ij =

s
(s)
ij − T

max
ij

(s
(s)
ij ) − T

T will be fixed experimentally as in the symmetric case to achieve a balance between clusters
separation and distances preservation.s

(s)
ij is the symmetric component of the similarity matrix

sij (for instance fuzzy logic similarity) andlj is any of the two asymmetry coefficients defined
in section 2.2. Obviously the new elasticity is asymmetric and can be decomposed as

eij = e
(s)
ij + e

(a)
ij =

se
(s)
ij

2maxk(lk)
(lj + li) +

se
(s)
ij

2maxk(lk)
(lj − li)

The symmetric component would reduce to the symmetric case if alllj are equal, that is, asym-
metry does not exists. The skew-symmetric component has basically the same form of the
skew-symmetric component of the similarity matrix(sij). This term increases the forces from
general terms to specific terms while decreasing forces from specific terms to broad terms.

3.2.3. Incorporating asymmetry through asymmetric distances

A natural way to incorporate asymmetry and that has been widely used by the MDS community
is to define the distances between the mass points as a symmetric term (Euclidean distance) plus
a bias term (Okada, 1997) . Words are distributed over the map such that asymmetric distances
over the final configuration approximate the word dissimilarity matrix. This fact will avoid the
degradation suffered by techniques that try to embed points from a non Euclidean space into a
Euclidean space. We then define vector difference between two mass points as

∆xaij = ||∆xaij ||uij =

(
||∆xij|| + lj − li

2maxk(lk)

)
uij

again, the symmetric component of∆xaij reduces to the Euclidean case. The skew-symmetric
component allows thatdji > dij in the final visual map if j is a broader term than i. By
substituting∆xij into the expression of the elastic force we get

feij = se
(s)
ij

(
||∆xij || + lj − li

2maxk(lk)

)
uij

This expression shows that forces due to terms with large asymmetry coefficient get stronger
due to asymmetry. Therefore general terms will become more influent in the final word map.

4. Experimental results

Assessing the performance of algorithms that produce visual word maps may not be an easy
task. We will first evaluate the ability of the mapping algorithms to preserve word distances.
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But from the practical point of view it is even more important to evaluate the ability of the map-
ping algorithms to preserve the cluster structure of the document collection. For this purpose
we need a thesaurus that allows us to determine which words belong to each cluster. To this aim
we have built a database made up of 982 documents that group in three main topics (‘Library
Science’ , ‘Science and Technology’ and ‘Economy and Sociology’ ). There are 7 well defined
subtopics. Therefore a clustering algorithm may be run over the final word map and cluster
overlapping may be easily evaluated. Mapping algorithms that preserve object dissimilarities
and at the same time favor cluster separation are considered better.

Two characteristics are evaluated through well known objective measures:
1. Distance order preservation : This feature is evaluated through the Spearman rank correla-

tion coefficient (Croft, 2000) that measures neighbors order preservation by the mapping
algorithm. Note that this coefficient is weaker than the correlation coefficient and there-
fore more appropriate to the problem at hand. This coefficient is computed both, for10%
of the smallest distances and for all the distances. These two measures allow us to study
separately the performance of the mapping algorithms for small distances and for the
large ones.

2. Clustering structure preservation: To evaluate this feature, it is necessary to run a clus-
tering algorithm ( for instance PAM (Kaufman and Rousseeuw, 1990) ) over the reduced
dimensional space where the points are embedded by the mapping algorithms. We pro-
pose 3 measures to evaluates the cluster quality:

• F measure (Croft, 2000) that has been widely used by the IR community. It is a
compromise between “Recall” and “Precision”. “Recall” gives the average maxi-
mum probability that a word of class i is assigned to a cluster j(j = 1, 2 . . . 7) and
“Precision” is the average maximum probability that a word of cluster j is assigned
to class i(i = 1, 2 . . . 7). Intuitively, F measures if words from the same class are
clustered together and vice versa.

• Entropy measure (Strehl et al., 2000): Gives the uncertainty for the classification
of words from the same cluster. It achieves the maximum when the probability of
points that belong to a given cluster being classified to each class is1/g, where g is
the number of clusters. Therefore low values are considered better.

• Mutual Information (Strehl et al., 2000): Is a nonlinear correlation measure between
the word classification induced by the thesaurus and the word classification given
by the clustering algorithm.

Before applying the mapping algorithms, documents are submitted to a standard text processing
after which we end up with 981 documents inIR1333. Words codified as vectors of 1-0 inIR981

were normalized according to theL2 norm. This preprocessing improve the performance of
all techniques proposed. All algorithms were initialized by a classic MDS algorithm to avoid
that any algorithm get stuck in a local minima. The only critical parameter that need to be
determined for the spring model is T. T is taken for all experiments as the 0.75 quantile of the
similarity matrixsij defined in section 2.1.

Experimental results are shown in table 1.

First and second columns give the Spearman rank correlation coefficient for all distances and for
only the10% of smaller distances respectively. Next three columns measure the F coefficient,
the average entropy of the clusters and the mutual information. Higher coefficients are consid-
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Sp Sp(neig) F Ent. M. Inf

(1) Sym. Sammon 0.18 0.21 0.47 0.53 0.19
(2) Asym. Sammon 0.29 0.20 0.43 0.58 0.15
(3) Sym. spring 0.27 0.22 0.50 0.51 0.20
(4) ki = L1 0.29 0.22 0.52 0.50 0.21
(5) ki =

√
L1 0.28 0.22 0.53 0.50 0.21

(6) ki = K − L 0.28 0.23 0.51 0.48 0.20
(7) ki =

√
K − L 0.30 0.26 0.52 0.48 0.20

(8) eij = s
(s)
eij ∗ L1 0.29 0.22 0.51 0.51 0.20

(9) eij = s
(s)
eij ∗ K − L 0.30 0.26 0.54 0.49 0.20

(10) Asym. dist.L1 0.32 0.26 0.56 0.50 0.21
(11) Asym. dist. K-L 0.32 0.25 0.54 0.49 0.21

Table 1:Comparison of spring asymmetric models and other MDS techniques

ered better except for the entropy measure. Rows (1) and (2) refer to symmetric and asymmetric
Sammon algorithms and (3) to the symmetric spring model. (4), (5), (6), (7) report results of
asymmetric spring models presented in section 3.2.1 with resistance coefficients proportional to
theL1 norm, square root ofL1 norm, K-L coefficient and square root of K-L coefficient respec-
tively . Rows (8), (9) test models presented in section 3.2.2 with asymmetric elasticities and
asymmetry coefficients proportional to theL1 norm and the K-L coefficient respectively . And
finally rows (10), (11) report results on models presented in 3.2.3 with asymmetry coefficient
proportional toL1 norm and K-L coefficient respectively .

According to table 1, neighbor order preservation is better for the asymmetric proposed algo-
rithms than for the symmetric spring model and the MDS algorithms. Distances preservation is
improved for both, large and small distances.
F measure shows that asymmetric algorithms preserve better cluster structure of data than their
symmetric counterpart. Notice that our algorithms are clearly superior to the MDS algorithms
according to F measure. Moreover, entropy is smaller for our proposed asymmetric techniques,
that means overlapping between the clusters is smaller. This can be explained by the fact that
MDS function error only try to preserve dissimilarities but not data clusters. Finally Mutual
Information slightly increases when asymmetry is incorporated. This can be justified by the
fact that Mutual Information penalizes terms with largeL1 norm.
Table 1 shows that the best way to introduce asymmetry is by defining asymmetric distances.
In this case all measures are clearly improved.

Finally we show in figures 2 and 3 the visual map generated by asymmetric Sammon algorithm
and the asymmetric spring model. Each color denotes a different class according to the classifi-
cation induced by the thesaurus. Note that it is easier to capture cluster structure for the second
map and that overlapping is reduced.

5. Conclusions and future research trends

In this work we have proposed new versions of a class of MDS algorithms to deal with data
where the dissimilarity matrix is asymmetric. The new algorithms have been tested on a chal-
lenging and interesting text mining problem. The models proposed are compared with both,
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Figure 2:Word map generated by asymmetric Sammon algorithm
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Figure 3:Word map generated by asymmetric iterative spring algorithm
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symmetric version of the algorithms and with other iterative MDS models ( also asymmetric
MDS ).
The asymmetric spring models improve the ability of the symmetric mapping version to sepa-
rate clusters and clearly outperform the behavior of MDS algorithms for this task. Moreover,
order preservation of neighbors is stronger for the proposed asymmetric versions, both for the
nearest neighbors and for the last ones.
We plan in the future to study new coefficients of asymmetry derived from asymmetric mea-
sures. We will focus on the development of asymmetric hierarchical models for text mining
problems.
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