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In the recent years, Unsolicited Bulk Email has became an increasingly important problem, with a big economic
impact. In this paper, we discuss cost-sensitive Text Categorization methods for UBE filtering. In concrete, we have
evaluated a range Machine Learning methods for the task (C4.5, Naive Bayes, PART, Support Vector Machines,
Rocchio and KNN), made cost sensitive through several methods (Threshold Optimization, Instance Weighting, and
MetaCost). F or the evaluation, we have used the Receiver Operating Characteristic Convex Hull method, that best
suits classification problems in which target conditions are not known, as it is the case. Our results do not show a
dominant algorithm nor method for making algorithms cost-sensitive, but are the best reported on the test collection
used, and approach real-world manual classifiers accuracy.
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� Text Categorization, Cost-sensitive Learning, Machine Learning, Unsolicited Bulk Email, Receiver

Operating Characteristic Convex Hull, C4.5, Naive Bayes, PART, Support Vector Machines, Rocchio, KNN,

Threshold Optimization, Instance Weighting, MetaCost.
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Internet mail is an increasingly important medium of communication, with direct impact on
human relations and businesses. However, it is also prone to misuse, specially by unethical direct
marketing companies. Spam email, or more properly, Unsolicited Bulk Email (UBE), has been
producing a considerable damage to Internet Service Providers, users and the whole Internet
backbone. For instance, according to an study undertaken for the European Commission, Internet
subscribers worldwide are wasting an estimated 10 billion euro a year just in connection costs due
to UBE (Gauthronet and Drouard, 2001).

Several proposals have been made to alleviate the UBE problem, ranging from technical to
regulatory and economic (Cranor and LaMacchia, 1998). Among the technical mechanisms
proposed, filtering is specially promising and currently in use widely. A popular approach is
filtering email using the message features, in contrast to other filtering mechanisms like channels
and aliasing. Most email clients allow users to manually build email filters. Also, mail processing
systems include filtering capabilities at the server side, that are configured by their administrators
by hand. Finally, some corporations have expert teams building UBE filters for other companies
(Brightmail, Inc., 2000). In general, these filters are costly produced and updated by users and
administrators.
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In the recent years, researchers are increasingly using Text Categorization (TC) techniques to
automatically build UBE filters (Androutsopoulos et al., 2000b; Androutsopoulos et al., 2000c;
Androutsopoulos et al., 2000a; Carreras and Márquez, 2001; Drucker et al., 1999; Gómez et al.,
2000; Katirai, 1999; Pantel and Lin, 1998; Provost, 1999; Sahami et al., 1998; Sakkis et al.,
2001). These approaches consist of building automatic UBE classifiers using Machine Learning
algorithms trained on a collection of UBE and legitimate messages. Our aim is identifying the
best Machine Learning (ML) algorithm for this task, that is, the one which produces the most
accurate UBE classifier. Several learning algorithms have been evaluated in related work, but
conclusions are hardly valid because of the two following reasons:

•  Some tests performed in the literature (e.g. (Katirai, 1999; Pantel and Lin, 1998; Provost,
1999; Sahami et al., 1998)) have not taken into account that UBE classification is a cost-
sensitive classification problem. If a UBE classifier decides that a message is legitimate and
it is in fact UBE, this mistake will be better tolerated by the user than the opposite
(assigning a legitimate to the UBE class). So, the first error is less expensive than the
second, and in consequence, we face a problem with asymmetric misclassification costs.

•  Other tests performed in the literature (e.g. (Androutsopoulos et al., 2000b;
Androutsopoulos et al., 2000c; Androutsopoulos et al., 2000a; Carreras and Márquez, 2001;
Drucker et al., 1999; Sakkis et al., 2001)) have considered asymmetric misclassification
costs, but restricted to scenarios that do not correspond to real world conditions, this is, how
tolerant the final user will be to misclassification, that remain unknown.

In this paper, we address the evaluation of a representative sample of ML algorithms for the
problem of inducing automatic UBE classifiers. The algorithms we have evaluated are the
decision tree learner C4.5, probabilistic method Naive Bayes, the rule learner PART, the
relevance feedback Rocchio algorithm (Rocchio, 1971), and the kernel method called Support
Vector Machines (SVM). Our evaluation has been performed using the Receiver Operating
Characteristics Convex Hull (ROCCH) method (Provost and Fawcett, 2001). This method is
based on plotting Receiver Operating Characteristic (ROC) curves, that allow a visual comparison
of ML algorithms regardless of the final operating conditions (real costs and class distributions,
usually unknown in laboratory test conditions). The ROCCH method also allows to discard
algorithms that can not be optimal for any real world conditions, and to identify the best available
algorithm when real world conditions are finally assessed.

The ROCCH method is sensitive to the way ROC curves are plotted, which is in turn dependent
on the method used to make a ML algorithm cost-sensitive. Among the several methods for
making ML algorithms cost-sensitive available1 , many of them algorithm-dependent, we have
focused on those that are applicable to most ML algorithms. Specifically, we have tested the
Thresholding optimization method (Witten and Frank, 1999), suitable for algorithms that output
numeric predictions (typically probabilities), and the algorithm-independent Instance Weighting
and MetaCost (Domingos, 1999) methods. The results obtained in our experiments have not
shown a clear dominant algorithm nor method for cost-sensitivity. However, we can outline the
following conclusions:

•  The most often dominant algorithm is SVM, which it is also one of the best performing
learning algorithms in the literature on TC and UBE categorization.

                                                          
1See the bibliography maintained by Peter Turney at

http://extractor.iit.nrc.ca/bibliographies/cost-sensitive.html.
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•  To our surprise, the method for making ML algorithms cost-sensitive is Instance Weighting.
This method is equivalent to stratification by oversampling, which was proven worse in
(Domingos, 1999) for a large sample of common ML benchmark collections.

•  The SVM algorithm trained with the Instance Weighting method has produced best results
ever reported for UBE categorization in the literature. The classifier produced in these
conditions is able to detect a 91.7% of the UBE messages without misclassifying any
legitimate messages. This makes the classifier valid for real-world conditions, in which the
best ever reported results to our knowledge reached the 93.91% of the UBE messages
detected (eTesting Labs, Inc., 2001).

The rest of the paper is organized as follows. First, we present the categorization environment,
including the data collection and preparation. After, we give an overview of the algorithms and
cost-sensitive method tested in this work. In the next section, a discussion of the evaluation
approach is presented, focused on the ROCCH method. Following this, we describe the results of
our experiment, and we conclude with our conclusions and future work.

" 
#�$�
����������
���������
���
%��&�������
As we have stated in the introduction, we address UBE detection as Text Categorization. The
main points in a TC system are text representation and dimmensionality reduction, the selection
of the learning algorithms, and the evaluation of the induced classifiers (Sebastiani, 2002).
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A number of UBE test collections have been used in previous experiments. Only three of the
collections used in previous experiments have been made publicly available for the research
community: Ling-spam2 , PU13 , and Spambase4 . Ling-spam contains messages from the archives
in the Linguist List and public UBE. PU1 contains private email, which approximates a real usage
scenario. As it comes encoded due to privacy issues, no real knowledge about the term of the
messages is available, and the work on it is necessarily limited. Spambase messages have been
donated by several users, and comes in a preprocessed form (48 terms plus 8 additional features
extracted from the messages, ad-hoc weights). Again, the work with this collection is limited
because no other number of terms can be extracted, and no other weighting schemas can be tested.

No collection except Ling-spam and PU1 have been used in two or more papers. Ling-spam has
been used in (Androutsopoulos et al., 2000c; Androutsopoulos et al., 2000a), and PU1 has been
used in (Androutsopoulos et al., 2000b; Carreras and Márquez, 2001). This makes results hardly
comparable. Ling-spam is perhaps the most useful UBE Categorization test collection, because it
is public, and comes in raw form. However, as the source of legitimate email is the Linguist List,
it does not reflect a real usage scenario, and conclusions from UBE Categorization evaluation on
this collection can only be limited. We must also note that the percentage of UBE messages in the
test collections is highly variable, ranging from 16,6% in (Androutsopoulos et al., 2000c;
Androutsopoulos et al., 2000a) to 88,2% in (Sahami et al., 1998). Moreover, none of the
percentages is entirely valid because real world conditions are highly variable and unpredictable.
For instance, the percentage of UBE in Ling-spam approximates that reported (Cranor and

                                                          
2Available at http://www.iit.demokritos.gr/∼ ionandr/lingspam_public.tar.gz.
3Available at http://www.iit.demokritos.gr/∼ ionandr/pu1_encoded.tar.gz.
4Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/spambase.
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LaMacchia, 1998). In this latest study, a 10% of UBE is reported for corporations, and only a 2%
for ISPs. The amount of UBE may vary from ISP to ISP, from corporation to corporation, etc.

From these facts, we obtain two conclusions: first, Ling-spam is the currently best (although not
perfect) candidate for the evaluation of UBE Categorization; second, it is clear that UBE
Categorization evaluation cannot depend on the amount of UBE of a collection – at least,
evaluation metrics should be independent of class distribution in a UBE Categorization test
collection. Due to the reasons outlined, we have selected the Ling-spam test collection for our
evaluation process. This test collection consists of 2412 messages extracted from the Linguist
mailing list archive, and 481 public UBE messages.
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The most often adopted representation of the messages in the literature is as term weight vectors,
in the Vector Space Model (VSM) (Salton, 1989). The terms are usually words and exceptionally
trigrams (as in (Pantel and Lin, 1998). Quite often, terms are stemmed and filtered according to a
stoplist. The weights in the vectors (that is, the attribute values) are frequently binary, perhaps
because the most widely applied learning algorithm to the task is Naive Bayes (NB). Optionally,
weights can be �� or ��⋅��� (Drucker et al., 1999), or ad-hoc (Gómez et al., 2000; Provost, 1999).
The ��⋅��� weighting schema defines the weight of the ith term in the jth document as:
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Being ���� the number of times that the ith term occurs in the jth document, N the number of
documents, and ��� the number of documents in which the ith term occurs.

There are 4 versions of the Ling-spam test collection. We have used the one that comes with
terms stemmed using the ��	
� lematizer and without the 100 most frequent words in the British
National Corpus. The collection has been processed using the Smart (v.11) retrieval engine5.
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Dimensionality reduction is a required step because it improves efficiency and reduces overfitting.
In the UBE categorization literature, terms are often selected with respect to their Information
Gain (IG) scores (Androutsopoulos et al., 2000b; Androutsopoulos et al., 2000c; Androutsopoulos
et al., 2000a; Drucker et al., 1999; Katirai, 1999; Sahami et al., 1998; Sakkis et al., 2001), and
sometimes according to ad-hoc metrics (Gómez et al., 2000; Pantel and Lin, 1998). Sometimes,
term selection is not performed (Carreras and Márquez, 2001; Provost, 1999). When applied, the
final number of terms is not standard (even in relation to the initial number of terms).
Androutsopoulos et al. (Androutsopoulos et al., 2000b; Androutsopoulos et al., 2000c) test several
numbers of terms (from 50 to 700 in steps of 50) selected according to IG defined as:

( ) ( ) ( )
( ) ( )∑

== =⋅=
==⋅===

���� �
����
�
���

�
���
���
,;1,0

2

,
log,,

Being u the UBE class and l the legitimate email class. The original Ling-spam test collection had
around 5000 different terms, and we have selected the 500 top IG scoring. Each message has been

                                                          
5Available at ftp://ftp.cs.cornell.edu/pub/smart/.
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represented as a term weight vector, in which the weights were binary, except for the Rocchio
algorithm, which better suits ��⋅��� weights.
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A wide variety of learning approaches have been applied to UBE Categorization, including Naive
Bayes (Androutsopoulos et al., 2000b; Androutsopoulos et al., 2000c; Androutsopoulos et al.,
2000a; Gómez et al., 2000; Katirai, 1999; Pantel and Lin, 1998; Provost, 1999; Sahami et al.,
1998; Sakkis et al., 2001), Ripper (Drucker et al., 1999; Pantel and Lin, 1998; Provost, 1999), k-
Nearest-Neighbors (KNN) (Androutsopoulos et al., 2000c; Gómez et al., 2000), boosted C4.5
(Carreras and Márquez, 2001; Drucker et al., 1999), Rocchio and linear Support Vector Machines
(SVM) (Drucker et al., 1999), C4.5 and PART (Gómez et al., 2000), Genetic Algorithms (Katirai,
1999), and Stacking applied to Naive Bayes and KNN. The most often applied learner is the
probability-based classifier Naive Bayes. Due to several reasons, cross-comparison is impossible
at the moment; however, a detailed look at the results published in the literature let us reasonably
expect SVM and boosted C4.5 be the top performing learning algorithms for UBE Categorization.
The algorithms tested in this study are (Witten and Frank, 1999):

•  The C4.5 decision tree learner which induces decision trees by a top-down strategy,
separating instances according to the values of high IG score attributes. It has been used
with prunning activated.

•  The Naive Bayes probabilistic schema, in which the posterior probability of an instance be-
longing to a class is computed from the prior probability, using Laplacean estimators.

•  The rule learner PART that, unlike C4.5Rules nor Ripper, builds rules one at time without a
global optimization process, by generating partial decision trees.

•  The kernel method called Support Vector Machines (SVM), which are maximum margin
hyperplanes that attempt to separate training instances, built through Platt’s sequential
minimal optimization algorithm using polynomial kernels. For efficiency, the computation
has been restricted to the linear case.

•  The Rocchio algorithm (Rocchio, 1971), which builds category vector prototypes by
averaging on the positive and negative instances. The parameters β and γ, which control the
impact of positive and negative instances, have been set to 4 and 1 respectively.

•  The KNN algorithm, an instance based classifier that classifies new instances by comparing
them to the K nearest neighbours in the training collection. We have used K=10

The implementation of the previous algorithms except Rocchio that we have used for this work is
the one provided in the WEKA package6. This package, written in Java, includes the
implementation of many popular ML algorithms, and preprocessing and evaluation capabilities.
The Rocchio algorithm has been codified and added to the library.
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We have tested the three following methods for making algorithms cost-sensitive:
                                                          
      6Available at http: //www.cs.waikato.ac.nz/ml/weka/index.html.



JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

328

•  The Threshold method (Witten and Frank, 1999), described below.

•  The Instance Weighting method, that consists of reweighting training instances according to
the total cost assigned to each class. This method is equivalent to stratification by
oversampling as described in (Domingos, 1999). The main idea is replicating instances of
the most costly class, to force the ML algorithm to correctly classify that class instances.

•  The MetaCost method (Domingos, 1999), based on building an ensemble of classifiers
using the bagging method, relabelling training instances according to cost distributions and
the ensemble outcomes, and finally training a classifier on the modified training collection.

These methods have been used as implemented in WEKA, with default parameter values.
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The two most relevant issues in TC effectiveness evaluation are the selection of the test collection
and the evaluation metrics. There is an increasing agreement among TC researchers in relation to
these decisions. The most often used TC test collection is Reuters, that includes 21578 news
stories classified according to a set of 135 economic subject codes (Sebastiani, 2002). A number
of learning algorithms have been tested and compared on Reuters (Sebastiani, 2002; Yang, 1999).
The most used performance metrics in TC evaluation are �� and the breakeven point (discussed
below) (Sebastiani, 2002; Yang, 1999). Evaluation is less standardized in UBE Categorization.
The evaluation metrics include accuracy, miss and false alarm rates, recall and precision, and cost
oriented measures like total cost ratio. In this section, we first discuss the topic of evaluation
metrics, and then we describe the ROCCH method, followed in our experiments.
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The effectiveness of TC systems is measured in terms of the number of correct and wrong
decisions. For simplicity, we will restrict ourselves to the problem of taking binary decisions
about a single class, which is the case of a UBE Categorization system. Let us suppose that the
TC system classifies a given number of documents. We can summarize the relationship between
the system classifications and the correct judgments in a confusion matrix. Each entry in the table
specifies the number of documents with the specified outcome. For the problem of categorizing
UBE, we take UBE’ as the positive class (+), and legitimate as the negative class (–). The key
“tp” means “number of true positive decisions”, and “tn”, “fp” and “fn” refer to the number of
“true negative”, “false positive” and “false negative” decisions, respectively. Most traditional TC
evaluation metrics can be defined in terms of the entries of the confusion matrix. �� (Sebastiani,
2002) is a measure that gives equal importance to recall and precision. Recall is defined as the
proportion of class members assigned to a category by a classifier. Precision is defined as the
proportion of correctly assigned documents to a category. �� is an average of recall and precision.
Recall and precision metrics have been used in some of the works in UBE Categorization (e.g.
(Androutsopoulos et al., 2000b; Androutsopoulos et al., 2000c; Androutsopoulos et al., 2000a;
Gómez et al., 2000; Sahami et al., 1998; Sakkis et al., 2001)). Other works make use of standard
ML metrics, like accuracy and error (Katirai, 1999; Pantel and Lin, 1998; Provost, 1999). Many
of the papers in the literature take into account that not all kinds of classification mistakes have
the same importance for a final user (Androutsopoulos et al., 2000b; Androutsopoulos et al.,
2000c; Androutsopoulos et al., 2000a; Carreras and Márquez, 2001; Drucker et al., 1999; Gómez
et al., 2000; Sakkis et al., 2001). Intuitively, the error of classifying a legitimate message as UBE
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(a false positive) is far more dangerous than classifying a UBE message as legitimate (a false
negative). This observation can be reexpressed as the cost of a false positive is greater than the
cost of a false negative in the context of UBE Categorization. Misclassification costs are usually
represented as a cost matrix in which the entry C(A,B) means the cost of taking a A decision
when the correct decision is B, that is the cost of A given B (cost(A|B)). For instance, C(+,–) is
the cost of a false positive decision (classifying legitimate email as UBE).

The situation of unequal misclassification costs has been observed in many other ML domains,
like fraud and oil spills detection (Provost and Fawcett, 2001). The metric used for evaluating
classification systems must reflect the asymmetry of misclassification costs. In the area of UBE
Categorization, several cost-sensitive metrics have been defined, including Weighted Accuracy
(WA), Weighted Error (WE), and Total Cost Ratio (TCR) (see e.g. (Androutsopoulos et al.,
2000c)). Given a cost matrix, the cost ratio (CR) is defined as the cost of a false positive over the
cost of a false negative. Given the confusion matrix for a classifier, the WA, WE and TCR of for
the classifier are defined as:
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The WA and WE metrics are version of the standard accuracy and error measures, that penalize
those mistakes that are dispreferred. Taking the trivial rejecter that classifies every message as
legitimate (equivalent to not using a filter) as a baseline, the TCR of a classifier represents to what
extent is a classifier better than it. These metrics are less standard than others used in cost-
sensitive classification, as Expected Cost, but to some extent equivalent. These metrics have been
calculated for a variety of classifiers, in three scenarios corresponding to three CR values (1, 9
and 999) (Androutsopoulos et al., 2000b; Androutsopoulos et al., 2000c; Androutsopoulos et al.,
2000a; Carreras and Márquez, 2001; Gómez et al., 2000; Sakkis et al., 2001).

The main problem presented in the literature on UBE cost-sensitive categorization is that the CR
used do not correspond to real world conditions, which are unknown and may be highly variable.
There is not evidence that a fp (classifying a legitimate message as UBE) is 9 nor 999 times worse
than the opposite mistake. As class distributions, CR values may vary from user to user, from
corporation to corporation, and from ISP to ISP. The evaluation methodology must take this fact
into account. Fortunately, there are methods that allow to evaluate classifiers effectiveness when
target (class distribution and CR) conditions are not known, as in UBE Categorization. In the next
subsection, we introduce the ROCCH method for UBE Categorization.
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The Receiver Operating Characteristics (ROC) analysis is a method for evaluating and comparing
a classifiers performance. It has been extensively used in signal detection, and introduced and
extended by Provost and Fawcett in the Machine Learning community (Provost and Fawcett,
2001). In ROC analysis, instead of a single value of accuracy, a pair of values is recorded for
different class and cost conditions a classifier is learned. The values recorded are the False
Positive rate (FP) and the True Positive rate (TP), defined in terms of the confusion matrix as:
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The TP rate is equivalent to the recall of the positive class, while the FP rate is equivalent to 1 less
the recall of the negative class. Each (FP,TP) pair is plotted as a point in the ROC space. Most
ML algorithms produce different classifiers in different class and cost conditions. For these
algorithms, the conditions are varied to obtain a ROC curve.

One point on a ROC diagram dominates another if it is above and to the left, i.e. has a higher TP
and a lower FP. Dominance implies superior performance for a variety of commonly performance
measures, including Expected Cost (and then WA and WE), recall and others (Provost and
Fawcett, 2001). Given a set of ROC curves for several ML algorithms, the one which is closer to
the left upper corner of the ROC space represents the best algorithm. Dominance is rarely got
when comparing ROC curves. Instead, it is possible to compute a range of conditions in which
one ML algorithm will produce at least better results than the other algorithms. This is done
through the ROC Convex Hull method, first presented in (Provost and Fawcett, 1997). Concisely,
given a set of (FP,TP) points, thus that do not lie on the upper convex hull correspond to
suboptimal classifiers for any class and cost conditions. In consequence, given a ROC curve, only
its upper convex hull can be optimal, and the rest of its points can be discarded. Also, for a set of
ROC curves, only the fraction of each one that lies on the upper convex hull of them is retained,
leading to a slope range in which the ML algorithm corresponding to the curve produces best
performance classifiers.

The ROC analysis allows a visual comparison of the performance of a set of ML algorithms,
regardless of the class and cost conditions (Provost and Fawcett, 1997). This way, the decision of
which is the best classifier or ML algorithm can be delayed until target (real world) conditions are
known, and valuable information can be obtained at the same time. In the most advantageous
case, one algorithm is dominant over the entire slope range. Usually, several ML algorithms will
lead to classifiers that are optimal among those tested, for different slope ranges, corresponding to
different class and cost conditions. Operatively, the ROCCH method includes the following steps:

1. For each ML algorithm, obtain a ROC curve and plot it on the ROC space.

2. Find the convex hull of the set of ROC curves previously plotted.

3. Find the range of slopes for which each ROC curve lies on the convex hull.

4. In case that target conditions are known, compute the corresponding slope value and output
the best algorithm. In other case, output all ranges and best local algorithms or classifiers.

One key issue in the ROCCH method is the way ROC curves are obtained for a ML algorithm.
Many ML algorithms produce classifiers that output numeric predictions. For instance,
probabilistic learning algorithms like Naive Bayes, decision tree and rule learners like C4.5 and
Ripper, etc. are used to build classifiers whose output is a probability estimation of membership to
the positive class. For these algorithms, the most popular method for plotting a ROC curve is
threshold variation (Provost and Fawcett, 2001; Witten and Frank, 1999): given a set of test
instances (e.g. new email messages) and a classifier, the numeric output for each test instance is
computed, and the instances are ordered according to the corresponding numeric prediction. Then,
for each instance, a (FP,TP) is obtained, that is, considering that instances before it are classified
as positive and instances after it are classified as negative. Subsequent (FP,TP) points are then
linked. This method for plotting a ROC curve is closely related to a method for making
algorithms cost-sensitive, that we will call the Threshold method. Once a numeric-prediction
classifier has been produced using a set of pre-classified instances (the training set), one can
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compute a numeric threshold that optimizes cost on another set of pre-classified instances (the
validation set). When new instances are to be classified, the numeric threshold for each of them
determines if the instances are classified as positive (UBE) or negative (legitimate).

Instead of drawing a ROC curve through threshold variation, we can vary the class and cost
conditions and obtain for each of them a (FP,TP) point using the Threshold method (Witten and
Frank, 1999). This view of ROC curve plotting allows to use other methods for making ML
algorithms cost-sensitive. For instance, one can use techniques as Stratification or MetaCost
applied to a ML algorithm for inducing a set of classifiers for a range of class and cost conditions,
and then linking the obtained (FP,TP) points to form a ROC curve. This is the basis of the method
we have applied to obtain ROC curves for a range of methods for making ML algorithms cost-
sensitive. In concrete, given a ML algorithm (like C4.5), a method for making algorithms cost-
sensitive (like MetaCost), and a set of class and cost conditions (for instance, class distribution
fixed as in Ling-spam, and cost ratios varying from 1/100 to 1 in steps of 1/10, and from 1 to 100
in steps of 10): first we obtain a (FP,TP) point for each of the class and cost conditions by ten-fold
cross-validation; then we discard the points that do not belong to the convex hull; and finally, we
link the remaining (FP,TP) points. The points in the ROC curves have been obtained training a
cost-sensitive classifier for a sample of cost conditions, keeping the class distribution unchanged.
The cost ratios used were 1/1000, 1/900, ... 1/100, 1/90, ..., 1/20, 1/10, 1/5, 1, 5, 10, 20, ..., 90,
100, 200, ..., 900 and 1000, leading to 43 points per curve.

C4.5 Naive Bayes
Slope Range (FP, TP) Classifier Slope Range (FP, TP) Classifier
[0.000,0.008] (1.000,1.000) C45MCi100 [0.000,0.003] (1.000,1.000) AllPos
[0.023,0.058] (0.260,0.990) C45THi020 [0.003,0.009] (0.222,0.998) NBTHi020
[0.058,0.101] (0.191,0.986) C45TH010 [0.009,0.017] (0.110,0.997) NBWE200
[0.101,1.833] (0.033,0.970) C45WE005 [0.017,0.381] (0.050,0.996) NBWE400
[1.833,2.467] (0.027,0.959) C45WE010 [0.381,0.480] (0.029,0.988) NBWE500
[2.467,18.00] (0.012,0.922) C45WE030 [0.480,16.00] (0.004,0.976) NBWE600
[18.00,36.30] (0.010,0.886) C45WE090 [16.00,472.0] (0.002,0.944) NBWE800
[36.300, �� (0.000,0.523) C45WE1000 [472.00,�� (0.000,0.000) AllNeg

PART SVM
Slope Range (FP, TP) Classifier Slope Range (FP, TP) Classifier
[0.000,0.081] (0.206,1.000) PAMCi040 [0.000,0.008] (0.239,1.000) SVTHi005
[0.081,1.000] (0.058,0.988) PAWE005 [0.008,0.044] (0.108,0.999) SVWEi005
[1.000,1.913] (0.031,0.961) PAWE040 [0.044,0.538] (0.040,0.996) SVTH001
[1.913,107.0] (0.008,0.917) PAWE100 [0.538,1.316] (0.027,0.989) SVWE010
[107.0,116.5] (0.006,0.703) PAWE900 [1.316,5.875] (0.008,0.964) SVWE050
[116.50, �� (0.000,0.004) PATH700 [5.875, �� (0.000,0.917) SVWE200

������ � ���	� ����� ��� ������!�	����"#� ���� "��
�� 	��!�"#� $��#��%� ���� ��������� ���""����	"� �	�� "����&� ���
���""����	"� �	�� ��������� �"� ������" � ��	"�� ���� �����	"� ��		�"
���� ��� ���� ���	���!� ��!�	����#� ����� ���� �����	"
��		�"
�������������"�'"��"���(��)�������#����������*���	���		�"
���"��������
��$���+�,�����"��-����"����
����%&������"����������!�	�
	�"���������	�(��������
��	�����	�.����	#�	�"
����(��)&



JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

332

0 
,�
���

���
!����&��������

We first present the results for each algorithm alone, in order to show the effect of the methods for
making it cost-sensitive. After that, we present the results for all the algorithm and cost-sensitivity
method combination. Finally, our results are compared with other results in the literature, and
with real-world results. We have calculated ROC curves for the six ML algorithms and the three
cost-sensitivity methods, excluding the combinations Rocchio + Instance Weighting (since
Rocchio works averaging, it makes no sense) and Rocchio + MetaCost (MetaCost is not siutable
for stable learners). Also we have not applied Instance Weighting nor MetaCost to KNN.

&����	
�� ����
�
!������
��

The results for the C4.5, Naive Bayes, PART and SVM algorithms are shown in the table 1. As it
can be seen, no clear winner (that is, no dominant) cost-sensitivity method can be found. The
method that are most often optimal is Weighting, but it do not dominates other methods for any
ML algorithm tested. Interestingly, in high slope ranges corresponding to extreme CR like those
used in the bibliography (9 and 999), Instance Weighting is the most frequent optimal method
(except for PART).

&���������
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�
����

In figure 1, the ROCCH for each algorithm are presented, including the ROC curves for the
Rocchio + Threshold and KNN + Threshold combinations. In the table 2, we present the best
classifiers for the slope ranges shown. While no dominant algorithm is found, the best classifier
for extreme cost conditions (those in which a user will not allow the system to filter out a
legitimate message), the best classifier is SVM trained with the Weighting method for CR = 200.

Slope Range (FP, TP) point Classifier
 [0.000,0.010]  (0.206,1.000)  PAMCi040
 [0.010,0.044]  (0.108,0.999)  SVWEi005
 [0.044,0.357]  (0.040,0.996)  SVTH001
 [0.357,1.250]  (0.012,0.986)  ROTHi020
 [1.250,14.750]  (0.004,0.976)  NBWE600
 [14.750, ��  (0.000,0.917)  SVWE200

������/ �0*���	)����	�"*��"���	�������!�	����"�����������"#���������!����������������������������&

Cost Ratio  Slope  Best Classifier  R  P  WA  TCR
 1  5.014  NBWE600  0.976  0.979  0.992  22.697
9  45.130  SVWE200  0.917  1.000  0.999  12.048

999  5009.538  SVWE200  0.917  1.000  0.999  12.048
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In the UBE Categorization literature, three scenarios were introduced, corresponding to CR = 1, 9
and 999, and several cost-sensitive metrics have been calculated. In the table 3 we present the best
results obtained in our experiments. Given the class distribution in Ling-spam (16.6% of UBE
messages), and the CR of each scenarios, the corresponding slopes are obtained, and the best
classifier is shown accordingly. We have also calculated the recall and precision of the UBE class,
the Weighted Accuracy and the Total Cost Ratio. To our knowledge, these are the best reported
results for UBE Categorization on this benchmark collection. The second and third rows in table 3
show performance numbers that approach best results reported in real-world studies (eTesting
Labs, Inc., 2001), in which a recall of 0.939 is presented. This latter figure corresponds to a
service in which a team of experts are manually building filtering rules 24 hours a day. Our results
suggest that the process of building UBE filters may be nearly automatic using ML algorithms.

1 
������
���

���
2�����
3���

In this paper, we have discussed the problem of UBE filtering as a problem of Text
Categorization. Also, we have evaluated several Machine Learning algorithms made cost-
sensitive through several methods, on a public test collection. We have performed the evaluation
using the ROCCH method, that specially suits classification problems in which target conditions
are not known in advance. The results of our experiments show no clear dominant ML algorithm
nor cost-sensitivity technique, but one of the classifiers produced was able to detect the 91.7% of
the UBE messages, without discarding any legitimate messages. The results of our experiments
are promising, although we have not fully exploited the potential information in the email
messages. Some papers in the literature suggest to consider other features than words in the
messages, like the address of the sender, the number of capital letters, or some hand-crafted
expressions like “win big money”, to produce more accurate classifiers (Gómez et al., 2000;
Sahami et al., 1998). In fact, what we propose is to follow a complete Knowledge Discovery
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process, identifying good candidates for message features, and producing accurate classifiers in
the context of a real usage scenario.
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