
JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

277

���������	
��
�
	��������
������	�
����
�����	�
�����

Jean-Gabriel Ganascia

Université Pierre et Marie Curie - LIP6 – 8, rue du Capitaine Scott – 75015 Paris – France

��������
This paper presents experiments with a new algorithm designed to detect recurrent syntactical patterns in natural
language texts. It first describes the pattern extraction algorithm, which is based on an edit model generalized to
SOT (Stratified Ordered Trees). Then it focuses on experiments with French classical literature of the 18th and
19th centuries. It goes on to evaluate efficiency before providing some examples of recurrent patterns that are
typical of an 18th century author, Madame de Lafayette.

��
������ edit distance, syntactical patterns, clustering, non-supervised learning

��
�	���������	

Our aim is to extract syntactical figures from natural language texts, those figures
corresponding to recurrent syntactical patterns, i.e. to patterns occurring many times in
syntactical trees. The proposed algorithm takes a parsing tree as input, since our goal is not to
generate or to refine grammars, but to detect general patterns with multiple approximate
occurrences. The method described here is general and could be applied to any parsing tree,
the only point is that it has to be expressed as a Stratified Ordered Tree (see section 2.1.2).

There are three reasons for doing this research.

The first is to characterize the personal style of authors, based on the hypothesis that the style
of writing is embedded within their choice of syntactical structure and lexicon. In the future,
this hypothesis will be tested on imitation. This is because many parodies exist where authors
caricature great writers by bringing out certain salient features of their personal style and if
our hypothesis is true, some of the authors' ways of writing will correspond to patterns which
imitators mimic.

The second reason is educational. Our aim is to help school children, students or young
writers to evaluate the richness and the diversity of their own style. It should also be possible
to identify classical mistakes and propose corrections. For instance, people who learn foreign
languages could take advantage of such an analysis to detect their own idiomatic expressions
and mistakes. More precisely, it so happens that some constructions are correct from a
grammatical point of view but unusual, which makes their frequent use strange or confusing
for a native reader.

The third reason is academic. Computational linguistics could take advantage of such a study
in order to distinguish different registers of language and to characterize them. Our claim is
that the advances in natural language analysis coupled with artificial intelligence techniques
may help to detect automatically such recurrent syntactical patterns, providing a new way of
studying uses of language. In this way it would be possible to generate figures of speech and
to automate the way classical rhetoric lists them.

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

278

In the proposed architecture, designed to discover such patterns, an unsupervised learning
algorithm clusters similar patterns.

The first part of this paper (section 2) focuses on the learning algorithms involved. After a
description of the whole chain (subsection 2.1), the paper describes the edit distance on which
the overall clustering process is based (subsection 2.2) and then the generation algorithm
(section 2.3) that builds the similarity graph. The following section (section 2.4) presents the
“center star”, designed to extract highly connected sub-graphs from the similarity graph and
which correspond to clusters of similar patterns. The second part of the paper (section 3)
describes some experiments. We are thus able to provide an evaluation of the proposed
approach from both a computational (and quantitative) point of view, and a linguistic and
qualitative one.

��
� �
���������	
������� �

This first section describes in detail the extraction algorithm that can be characterized as an
unsupervised learning algorithm.

����������	�
����
����

To summarize, the whole processing chain that transforms a natural language text into a set of
frequent patterns is given below.

This subsection details the input of the process and the first step. As we shall see in the
following, the algorithm is based on the use of the Stratified Ordered Tree (SOT) data
structure, which will be described in subsection 2.1.2.

�����������	�
����
��
�����
����

The main input of the system consists of a natural language text that is a sequence of
sentences, each being affirmative, interrogative or exclamatory. A natural language analysis
performs the first step, through parsing or categorization. It associates labels to words (noun,
verb, etc.) and to groups of words (noun group, verb group, etc.). Since the paper is not
focused on this natural language analysis, the parser and the categorization process used are
not described in detail here. We shall just focus on the generality of the approach that has as
input any natural language parsing tree with different grammar and different sets of labels.
The only point is that the analysis transforms texts into trees or forests, i.e. into sequences of
trees, which means that we exclude general graphs. Most of the time, trees are layered, i.e.
depending on the level of the trees, labels belong to distinct classes. For instance, one level
corresponds to non-recursive syntagmas, i.e. noun groups or verb groups; the second to word
categories, i.e. articles or nouns; the third to attributes like gender or number; the next to
lemma, i.e. canonical forms of verbs or nouns, and the last to words as they appear in
sentences.

��
�����	!���

����	�

��
��
�������

����
��������
����������
���

�����	�
�����

�����
���
"��!��:

����		���
�����	��

���������

���!

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

279

Note that our approach is not restricted to syntactical decomposition in non-recursive groups.
The only limitation is that the result of the analysis has to be structured in a Stratified Ordered
Tree (SOT) (see the following subsection). The experiments conducted here apply two
different analyzers. The first uses Winbrill-0.3 trained at INALF-CNRS (Lecomte 1998). It
just labels text words, without extracting groups. The second uses the Vergne-98 parser
written by Jacques Vergne. (Cf. http://www.info.unicaen.fr/~jvergne and (Vergne 1999)) at
GREYC (Groupe de REcherche en Informatique, Image, Instrumentation de Caen). In the
future we plan to use "CORDIAL analyseur" from SYNAPSE, because it generates recursive
parsing trees. For reasons of space, we shall report only the second experiment using the
Vergne-98 parser.

���������	���������	��	����	���������

According to a classical definition, an ordered tree is a tree where left to right order between
siblings is significant. In other words, it means that an ordered tree can be recursively defined
as a labeled node followed by a forest, i.e. a sequence of trees.

All sequential data can obviously be represented with a depth-1 ordered tree. By adding levels
to ordered trees, it is possible to organize data in a way that represents implicit background
knowledge. For instance, a text, i.e. a sequence of characters, is a list of sentences, each of
which is composed of words and punctuation marks. Therefore, it can be represented using a
depth-3 tree that makes this structure explicit. Considering now parsing trees resulting from a
syntactical analysis, there are two more levels corresponding to syntactical groups (i.e. noun
or verb groups) and to word categorization.

As has previously been shown, ordered trees increase representation power and it is possible
to detect similar sub-trees with respect to this data organization. It is also possible to extract
general patterns that have multiple approximate occurrences. For instance, any specific
sequence of syntactical groups which appears many times in the data may be detected without
considering the corresponding words or their categories.

Nevertheless, due to the high number of potential pairs of sub-trees recurrent pattern detection
is intractable. To make it manageable, nodes are categorized into ��	�� in such a way that two
successfully matched nodes must be of the same sort. In other words, a match between two
trees is valid if and only if the corresponding nodes in the matching are of the same sort.

In addition, we now suppose that there exists a total order on the set of sorts and that, with
respect to this order, the sort of the son(s) is identical to, or immediately follows that of the
father. This constraint defines the so-called stratification and the resulting structure is a SOT
(Stratified Ordered Tree). More formally, by defining an ordered set, S (set of sorts), and a
function ��	�(x) which associates a sort to each labeled node belonging to L, we can specify a
SOT as an ordered tree where each node sort is the immediate successor of its father sort,
except for the root which has no father.

In our favorite example, syntactical trees resulting from natural language text parsing, it
means that the ordered set of sorts S contains five categories {Text, Sentence, Group,
Category, Word} such that Text < Sentence < Group < Category < Word.

Given the SOT data structure, we shall first determine a similarity measure quantifying the
approximate matching between SOTs (Cf. subsection 2.2). Then, it will be possible to
efficiently generate a ����
�	����
	�� recording the closest sub-trees of the input SOT (Cf.

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

280

subsection 2.3). It is this similarity graph which serves as input of a clustering algorithm that
builds groups of similar patterns.

������������������

Much work has been done in molecular biology (e.g. Sagot et Viari 1996), music (Rolland et
Ganascia 1999) or text analysis to compare sequences of characters. In the past, a lot of
extremely good results have been obtained concerning the exact matching problems between
strings, areas or binary trees (Karp et al. 1972; Landraud et al. 1989). Other approaches have
dealt with approximate pattern matching. Some of them used dynamic programming
techniques based on the notion of edit distance (Sankof et Kruskal 1983). A general overview
of these techniques is to be found in (Crochemore & Rytter 1994). Let us just recall here some
of the basic principles.

#���	����	: An ������� is an operator that replaces one character or one sub-string of a string,
or more generally one node of a tree, by another one. For instance, a substitution is an edition
if it transforms one character of a string into another in the same position. An insertion
(respectively deletion) which inserts (respectively deletes) one character in a string is also an
edition.

#���	����	: An ���� ��������� between two strings or two trees is based on the minimum
number of editions that transform one string or one tree into another. For instance, here is an
edit transformation from the string “WHICH” to the string “THAT”:

 W H I C H

 Substitutions Deletion

 T H A T

It follows that the edit distance from “WHICH” to “THAT”, i.e. editAs(WHICH, THAT), is lower
or equal than cost(substitution(W, T)) + cost(substitution(I, A)) + cost(substitution(C, T) +
cost(deletion(H)). Let us note that in this case, it is equal, since there exist no cheaper set of
edition which transforms WHICH in THAT.

�������!����"��������#��$������	��
�

Let us now consider that strings x and y are given as two tables of length n and m, i.e. as
x[1..n] and y[1..m]. Then it is possible to build a matrix (n+1)×(m+1) called EDITAs where
EDITAs(i, j) is filled with the value of editAs(x[1..i], y[1..j]) for non null i and j, while EDIT(0,
j) corresponds to the insertion of y[j], and EDIT(i, 0) to the deletion of x[i]. A simple formula
summarizes the way the matrix elements are computed:

where ��
�����(x[i]), ��%���������(x[i], y[j]) and ����	����(y[j]) correspond to the cost of
respectively the deletion of x[i], the substitution of x[i] by y[j] and the insertion of y[j].







+−
+−−

+−
=

])[(])1..1[],..1[(edit

])[],[(])1..1[],1..1[(edit

])[(])..1[],1..1[(edit

min])..1[],..1[(edit

&�����	����&���

&�������%�������&���

����
�����&���

&���

As

As

As

As

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

281

�������!������������!����'���
�����	���

The edit model can be extended to trees and forests, but its inherent complexity makes it
intractable in general cases for pattern extraction algorithms. It has been proved that some
efficient procedures exist (Zhang K 1993) under strict conditions, but the imposed restrictions
preclude their use for practical problems.

Ganascia has shown (Cf. Ganascia (2001)) that, by restricting the structured input to SOT, i.e.
to Stratified Ordered Trees, it is possible to build a new efficient pattern extraction algorithm.
This algorithm uses as input a huge SOT containing 100,000 or more nodes, and generates
clusters of small similar SOTs that appear to have multiple occurrences in the input SOT.

Since this paper is not concerned by all the algorithmic detail, we shall just provide an
intuitive script of the way the edit distance between trees is computed.

Before giving such a definition let us note that since trees are stratified, the node sorts refer
directly to their level in trees. Therefore the comparison of sequences of nodes resulting from
the left-hand exploration of two trees is equivalent to the comparison of those trees. Taking
this remark into account, the edit distance between two SOTs is reduced to the edit distance
between the sequences of nodes resulting from the left-hand exploration of those SOTs.

In a more formal way, by denoting lhe(T) the left-hand exploration of SOT T, the edit
distance edit(T, T’) between two SOTs T and T’ can be expressed by editAs(lhe(T), lhe(T’)).

���������
������������� �����
�����
���

Using the edit distance, a labeled graph called the ����
�	����
	�� is built which makes the
distances between patterns explicit when they do not go beyond a fixed threshold. This
similarity graph is of crucial importance; it constitutes the main input of the clustering module
and includes all the patterns that generalize sub-trees of the input SOT.

Let us note that this implicit generalization is a key-point in the overall algorithm, since it
generates all general patterns including non-balanced ordered trees. In the case of natural
language parsing trees, it means that generated patterns may look like the following:

More precisely, the similarity graph of a tree T contains all pairs of similar patterns of T with
respect to the edit distance. In other words, its nodes correspond to sub-trees of T, and its arcs
to pairs of such sub-trees, labeled with their edit-distance.

word
"elle"

Center
cat: K

Group
cat: K

Group
cat: V

Group
cat: N

word
"qu’"

Center
cat: O

Group
cat: O

word
" elle "

Center
cat: K

Group
cat: K

Group
cat: V

Group
cat qi

Mark
"."

Connect
cat: E

Group
cat: G

Sentence

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

282

Therefore, building the similarity graph primarily requires listing all the patterns belonging to
a tree T, including all their generalizations. For instance, considering the tree associated to the
expression (3-1)×(2+5), this generation lists all the different generalizations corresponding to
the expansion of different nodes of the tree, i.e. to x, x×y, x×(2+5), (3-1)×y, (3-z)×(x+y), (3-
1), (3-x), etc. Since the maximum depth of ordered trees considered here is not very high, the
number of such patterns is not so high. It is also possible to introduce some restrictions on the
type of patterns, thus considerably limiting this number.

For the sake of clarity, let us consider the tree shown below. The listing of the sub-trees of T
begins with sub-trees of depth-0, i.e. with nodes (), (1), (2), … (3 1).

Then it is possible to generate all the depth-1 sub-trees by expanding each node of the depth-0
sub-trees. Therefore, the first node () gives () (1) (2) (3), the second, i.e. (1), generates (1) (1
1) (1 2), the third (2), (2) (2 1) (2 2) (2 3) (2 4), etc.

The building of depth-2 sub-trees proceeds in the same way, by expanding depth-1 nodes in
depth-1 sub-trees. For instance, the first depth-1 sub-tree () (1) (2) (3) will generate three
depth-2 sub-trees:

1. () (1) (1 1) (1 2) (2) (3),

2. () (1) (2) (2 1) (2 2) (2 3) (2 4) (3),

3. () (1) (2) (3) (3 1)

From all three sub-trees, it is possible to expand other depth-1 nodes to generate all the depth-
2 sub-trees. For instance, by expanding node 2 and node 3 in the first one, i.e. ()(1)(1 1)(1
2)(2)(3), we obtain ()(1)(1 1)(1 2)(2)(2 1)(2 2)(2 3)(2 4)(3) and ()(1)(1 1)(1 2)(2)(3)(3 1).

More generally, the generation algorithm starts from trees reduced to nodes and extends
progressively each non-terminal node of those trees with all their sons, until no extension is
possible. For the sake of clarity, we have introduced an intermediate function called
“expansion”. This function derives Vn that contains all the patterns extending at least one
depth-n node from trees belonging to Vn-1. The algorithm just lists all the non-terminal depth-
n nodes of each tree belonging to Vn-1, and then extends all the possible combinations of those
nodes. Below is a pseudo-code formulation of the corresponding algorithm:

(1 1) (1 2)

(1)

(2 1 1) (2 1 2)

(2 1) (2 2) (2 3) (2 4)

(2)

(3 1)

(3)

()

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

283

���������	
���
���
����� list V, integer n; ������ list VP

������� A ∈ V
B � all non terminal depth-n nodes of A
PB � set of non null parts of B
������� E ∈ PB

Q � copy(A)
������� N ∈ E

Extend node N in Q
������� all
Add Q to VP

������� all
������� all

Once the expansion function is given, a simple algorithm generates all the patterns contained
in any ordered tree T — let us call it �(T) —. Here is the corresponding pseudo-code:

����������	�	���	���������	��

����� tree T; ������ list R
�������������� n � 0 ; V � nodes(T) ; R � V ;

����	 V
�
���
���(V, n, VP) ;
R � R ∪ VP ; V � VP ; n � n + 1 ;

��� While

In conclusion, let us note that the graph does not contain all pairs of patterns, but only the
closest ones (see (Ganascia 2001) for more details). By taking into consideration
mathematical properties of the edit distance, it is possible to considerably reduce the
computational complexity of similarity graph generation.

��!��
�����
��������
����

The last step is the pattern extraction that is itself split into two logical operations:
����
�	�(����� which builds classes of similar patterns and the ����	������ of each cluster.

��)����*���
�	�(�����

Categorization groups patterns that are similar with respect to the edit distance. Since the
similarity graph records all similarities between patterns, it is natural to extract clusters from
this graph. However, there are many different ways to build such clusters.

We have chosen here a very efficient approach to pattern extraction, which is called the
“center star” algorithm (Gusfield 1993). The basic principle can easily be described. Let us
first define the notion of �����	������	.

Node
$

Node
$

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

284

#���	����	: A ���	� �����	�� on N is a graph of which all vertices contain node N. In other
words, a star centered on N is composed of all nodes P such that the pair {N, P} is a vertex
(see figure).

Using any similarity measure, the “center star” algorithm first computes all the star
evaluations for all nodes of the similarity graph, then the best star is selected and the nodes
belonging to it are discarded from the similarity graph before the process iterates.

��)����"��������

The final step in the clustering algorithm is related to the depiction of each cluster obtained.
Our algorithm just chooses the pattern that maximizes the similarity with other members of
the cluster and minimizes the similarity with members of other classes. To facilitate
interpretation it is possible to show the original fragments of text that match the pattern. For
the sake of illustration, let us consider again the pattern of section 1.3. It was extracted by
running our program on a French 18th century text written by Madame de Lafayette and
entitled ��������������������. It generalizes the syntactic tree of the following phrases: +!

�
��,����� ��� -�.�

�� �/���� �	�&��,�0+� It also covers two sentences +1
� ��� &��
���� ��� ���/���
���	�����2������-�.�

���/�����,&2�0+�and�+!

��/����������
���	�������-�.�
��/�������
.����	�3"
which means that the edit distance between this pattern and one of the generalizations of the
syntactic trees derived from those two sentences is lower than a certain threshold. Under this
condition, it can be considered as the description of the cluster containing those three
sentences.

%�
��!�����	��

The system was tested on more than 100 short stories and novels drawn from the 18th and 19th

centuries, written by Madame de Lafayette, Guy de Maupassant, Alphonse Allais, Marcel
Schwob, Alphonse Daudet, Eugène Mouton, Hégésippe Moreau and George Sand, among
others. The texts were first parsed using the Vergnes-98 analyzer, and then the resulting
sequence of syntactical trees was transformed into one SOT.

���������������

From a practical point of view, we studied the empirical complexity by relating execution
time in seconds to input size in thousands of words, by reporting it on a log-log scale, and by
applying a linear regression algorithm. It clearly appears (see figure) that the regression
coefficient (i.e. the slope of the line) is equal to 2 which empirically shows that the temporal
complexity is quadratic.

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

285

This first empirical result is highly satisfactory since the theoretical complexity of our
algorithm is at least quadratic with the size of the input text. It comes from the way our
algorithm computes the similarity graph, by exploring all the pairs of patterns. Because of the
tree structure of texts, the number of sub-trees is linear with the number of sentences, so the
global complexity cannot be any lower.

To avoid misunderstanding, it should be said that in the case of exact repetition (Karp et al.
1972) the procedure is clearly more efficient, but not in the case of approximate matching, as
here.

The system has been implemented in C++ and tests are run on a Macintosh G3, with a 300
MHz processor. It takes a few seconds to extract patterns from short stories while, in the case
of full novels, it may take one hour or more. It means that it is possible to apply our algorithm
to extract patterns that are characteristic of full books, but not to deal with the lifetime work of
an author. However, as we shall see in the next subsection, it can already be of great help.

������"�����������"�
�����������
��

The pattern extraction program is completed by a discrimination procedure. Given two texts,
this procedure detects the recurrent patterns covering multiple occurrences of some syntactical
structure in the first text without detecting any occurrence of this structure in the second. This
discrimination procedure has been employed to detect syntactical structures characteristic of
one author, i.e. that distinguish this author from others. The author chosen was Madame de
Lafayette, the two texts, a short story entitled �������������������� and a famous novel, ��
�	�����������*
4/��. Three 19th century authors were used by the discrimination procedure,
Guy de Maupassant, Georges Sand and Marcel Schwob. More precisely, our corpus contains
the following stories:

By Guy de Maupassant: ��� ���	� ��55��� and� ��� ���	� ��55)�6� ��� /��

,�6� ��� 	�����

����6
7��		��6�!����	6�8����	����6�*����� ������'�	��6�������%���.

Running time (LOG LOG scale)

0

0,5

1

1,5

2

2,5

3

3,5

4

-0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4

Text size in thousands of words (log scale)

Total time Linear (Total time)

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

286

By Georges Sand: ��� �,�� ������4	�6� ���
����� ���� �9�	��6� ��� ��	����� 	��
�6� �.�	
��� ��
�����6�����,������
	��������

By Marcel Schwob: �	�� �,6� #,��	���6� ��	�
��� �����6� ��� "��6� �. ����� ���%
�6� ��� ��	�6
:�%�
���6�7�	�%�
�6���
�� 6�*���������;���6�������	�������
.�����.

The following three patterns are present in the Lafayette texts without any occurrences in the
other texts:

Among others, the first pattern covers the following French expression: "���
������
��	", "��

.,/���	", "���
.����	", and others like "���
���	����	", "2�
����	/�	", "���	�
.�%
�
�	" etc. The
second covers "�.����/��	", "�.���������	�", "�.���
�	����	", "�.������	�" etc. but also, "����
����/��	" and others which appear to have a very similar structure.

While the third covers the following three fragments "����	�%
������ %���� �����",
"��	����������%���������", "�	4��%��������".

There are many others specific syntactical patterns characteristic of Madame de Lafayette.
Among those, here is a syntactical structure that is frequently repeated:

Periph
cat: j

Word
"bien"

Periph
cat: j

Word
"faits"

Central
cat: z
mp

Group
cat: z
mp

Word
"de"

Connect I
cat: q

Word
"le"

Periph
cat: M

s

Central
cat: I
ms3

Group
cat: qI
ms3

Word
"d’ "

Connect I
cat: p

Word
"en"

Connect I
cat: p

Central
cat: S

s3

Group
cat: ppN

s3

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

287

It closely covers all those fragments (and others in Madame de Lafayette’s work) whereas it is

virtually absent from the other authors: +����	����������/�		���	���
����	�
��0", "���	�������
��/�		���/�������� ��/�	����", , "'������	���������	���	���
��	��������� ���+, "'��������
*
4/��� ��� 	,������� 	���", "��� ������ ��� ������ ������� �,&2�
�� � �/�
��	� ��� ��/�		��;", "��
�����������
��	�������	������������������������		,��
�������", etc.

There exists also many fragments less closely covered by this pattern. For instance: "'�����
���* �	�����/���������������������,�", "������������������������������	��,�,��������������
��	��,�3", "������������	�<������%�

����/���&���", "�. ����	���%�����������
��	�����
����������
�	��/�	�����
	�����������	�2�	,
��	", etc.

 Let us note that in most of those phrases, the word "�����" which means count in French and
refers to a member of the aristocracy, is matched against other words like "�	����", "������"
(i.e. madam), "�������	" (i.e. sir), "	����" (i.e. queen) and "��������" (i.e. countess). Since
no semantics has been given, this example shows how the syntax may convey semantics. This
study is part of a more general project aiming to investigate relations between form and
meaning in literature.

All those results were presented to experts of French literature. They recognize some of the
pattern as characteristic of the 18th century style of writing, while others seemed to be more
specific to Madame de Lafayette. We are now currently integrating our program to a reading
environment. As the reader might will imagine, there are many other hypotheses that may be
investigated using this procedure.

Note that there exists already many Computer-Assisted Research on Literature (CARL)
known as stylometric analysis (Cf. (LoweD. Matthews R 1995), (Holmes D 1994) etc.) .
However, those studies are based on the words, on their repetition, on their size, on their
number or on their categories, not on the syntactical structure. How goal would be to compare
and to combine our approach to those one, so the next step of our research would be a full
statistical evaluation of our technique on an authorship attribution task.

&�
'�	������	

In conclusion, it has been proved that the new text mining procedure described here is
efficient and valuable. Literary critics could obviously take advantage of such kind of
analysis, so it could be included in a reading environment for researchers or students.
Moreover, the extracted patterns could be reused by a natural language synthesis procedure.
Therefore, natural language processing would benefit from this research.

Group
cat: N

Group
cat: pN

Group
cat: V

Group
cat: N

Connect
cat: E

Group
cat: G

Sentence

JADT 2002 : 6es Journées internationales d’Analyse statistique des Données Textuelles

288

(�����	���
Crochemore M, Rytter W (1994), ������

�	�� ��, “Approximate pattern matching”, pp. 237-251.

Ganascia J-G (2001) !��	��������������		����7����	��� �	�����	���������	��	����	���, 12th European
Conference on Machine Learning, 3-7 September 2001, Freiburg, Germany, in proc. ed. Luc De
Raedt & Peter Flach, Springer LNAI 2168, pp. 167-178.

Gusfield D. (1993) !������������ ������	���
���
����-�������
�
������$�� �:��	�������!		�	�#�����,
Bull. Math. Biol., 55:141-154.

Holmes D (1994) Autorship Attribution, *������	������� ��=���������, 28 pp. 87-106.

Karp R M., Miller R E., Rosenberg A L. (1972), ������1��������������������������7����	��������	��
�6
�	���������		���, in Proc. 4th Annu. ACM Symp. Theory of Computing, pp. 125-136.

Landraud A M., Avril J-F, Chrétienne P (1989) ����

�	�� ����	�>�����
���*��������	����	��� �	��
%����>���
�������	��
�, IEEE transactions on Pattern Analysis and Machine Intelligence, 11 (8), pp.
890-895.

Lecomte J, (1998) BRILL14-JL5 / WINBRILL-0.3, user's manual available at INALF.

Lowe D, Matthews R (1995)� �?�����	�� @��� >
��� �	0� �� ���
����	��� ���
����� %�� �����
� #����
>�������, Computer and the Humanities, 29 pp. 449-461.

Rolland, P-Y, Ganascia J-G, (1999) '�����
� 7����	�� !��	������� ���� ����
�	���� ����������. In
Miranda, E. (ed.). Readings in Music and Artificial Intelligence. Contemporary Music Studies - Vol
20. Harwood Academic Publishers.

Sagot A. , Viari A. (1996) A Double Combinatorial Approach to Discovering Patterns in Biological
Sequences, *��%�����	��
�7����	��'��� ��
, Springer Verlag, LNCS 1075 pp. 168-208

Sankoff D., Kruskal J.B. (1983), �����A�	��6� ��	��
� !����� ���� '��	���
���
��0� � �� � ��	�� ���
7	������������-������*����	����, Addison-Wesley, Reading, Mass..

Vergne J., (1999) ���
����	�
��,��	�� �/��� ����������	�� ��	���
6� �,���%	�� �BBB, convention
d’utilisation de l’analyseur de Jacques Vergne.

Zhang K. (1993) >�����

�	�� �����	�� �������	������������
����������%��$�����	��	���
�%�
��� �	���
���� 	�
����� �	�%
���, report N°361, Department of computer science, University of Western
Ontario, London, Ontario, Canada.

